scispace - formally typeset
Search or ask a question

Showing papers by "Nanako Shigesada published in 1999"


01 Jan 1999
TL;DR: A simple mathematical model of coral shape is constructed, in which the number of branches, their angles and lengths are morphological parameters, and the optimal coral shape changes with light intensity, which agrees qualitatively with the observation of P. sillimaniani colony in natural habitats.

120 citations


Journal ArticleDOI
01 Jul 1999-Ecology
TL;DR: A mathematical model is used to simulate the dynamics of the disease and predict how the epidemic could be controlled by eradication of the pine sawyer and the probability that a healthy tree will escape from infection until the epidemic dies out decreases sharply.
Abstract: An epidemic of pine wilt disease has been spreading in wide areas of Japan for nearly a century. The disease is caused by the pinewood nematode, Bursaphelenchus xylophilus, with the pine sawyer, Monochamus alternates, as vector. The spread of disease is facilitated by an obligatory mutualism between the nematode and the pine sawyer: the pine sawyer helps the nematode transmit to a new host tree, while the nematode supplies the pine sawyer with newly killed trees on which to lay eggs. We present a mathematical model to describe the host-vector interaction between pines and pine sawyers carrying nematodes, on the basis of detailed data on the population dynamics of pine sawyers and the incidence of pine wilt disease at a study site located on the northwest coast of Japan. We used the model to simulate the dynamics of the disease and predict how the epidemic could be controlled by eradication of the pine sawyer. The main results are as follows: (1) There is a minimum pine density below which the disease always fails in invasion. However, even if the pine density exceeds this minimum, the disease fails in invasion due to the Allee effect when the density of pine sawyers is very low. (2) The minimum pine density increases disproportionately with increase in the eradication rate. (3) The probability that a healthy tree will escape from infection until the epidemic dies out decreases sharply with increase in the initial pine density or the initial density of pine sawyers.

96 citations



Journal ArticleDOI
TL;DR: A mathematical model is constructed to deal with the dynamics of the ammonia nitrifying processes in a biological reactor and shows that the two bacteria are in a symbiotic relationship and can better perform when both coexist, as has been empirically recognized.
Abstract: In a space environment such as Space Shuttle or Space Station, animal experiments with aquatic species in a closed system pose a crucial problem in maintaining their water quality for a long term. In nature, ammonia as an animal wastes is converted by nitrifying bacteria to nitrite or nitrate compounds, which usually become nitrogen sources for plants. Thus an application of the biological reactor with such bacteria attached on some filters has been suggested and experimentally studied for efficient waste managements of ammonia. Although some successful results were reported (Kozu et al. 1995, Nagaoka et al. 1998, Nakamura et al. 1997, 1998) in the space applications, purely empirical approaches have so far been taken to develop a biological filter having a stable nitrifying activity. In this study, we constructed a mathematical model to deal with the dynamics of the ammonia nitrifying processes in a biological reactor. The model describes population dynamics of the ammonia-oxidizing bacteria and the nitrite-oxidizing bacteria cultivated on the same filter. We estimated parameters involved in the model using the experimental data. The result shows that these estimated parameters could be applied to general cases and that the two bacteria are in a symbiotic relationship; they can better perform when both coexist, as has been empirically recognized. Based on the model analysis, we discuss how to prepare a high performance biological filter.

2 citations