scispace - formally typeset
Search or ask a question

Showing papers by "Nikolaus Rajewsky published in 2003"


Journal ArticleDOI
TL;DR: This work measures mRNA decay rates in two human cell lines with high-density oligonucleotide arrays and investigates the dependence of decay rates on sequence composition, that is, the presence or absence of short mRNA motifs in various regions of the mRNA transcript.
Abstract: Although mRNA decay rates are a key determinant of the steady-state concentration for any given mRNA species, relatively little is known, on a population level, about what factors influence turnover rates and how these rates are integrated into cellular decisions. We decided to measure mRNA decay rates in two human cell lines with high-density oligonucleotide arrays that enable the measurement of decay rates simultaneously for thousands of mRNA species. Using existing annotation and the Gene Ontology hierarchy of biological processes, we assign mRNAs to functional classes at various levels of resolution and compare the decay rate statistics between these classes. The results show statistically significant organizational principles in the variation of decay rates among functional classes. In particular, transcription factor mRNAs have increased average decay rates compared with other transcripts and are enriched in "fast-decaying" mRNAs with half-lives <2 h. In contrast, we find that mRNAs for biosynthetic proteins have decreased average decay rates and are deficient in fast-decaying mRNAs. Our analysis of data from a previously published study of Saccharomyces cerevisiae mRNA decay shows the same functional organization of decay rates, implying that it is a general organizational scheme for eukaryotes. Additionally, we investigated the dependence of decay rates on sequence composition, that is, the presence or absence of short mRNA motifs in various regions of the mRNA transcript. Our analysis recovers the positive correlation of mRNA decay with known AU-rich mRNA motifs, but we also uncover further short mRNA motifs that show statistically significant correlation with decay. However, we also note that none of these motifs are strong predictors of mRNA decay rate, indicating that the regulation of mRNA decay is more complex and may involve the cooperative binding of several RNA-binding proteins at different sites.

566 citations


Journal ArticleDOI
TL;DR: Results indicate that binding sites remain clustered for these "core modules" while not necessarily residing in conserved blocks, which is an important clue as to how regulatory information is encoded in the genome and how modules evolve.
Abstract: One of the important goals in the post-genomic era is to determine the regulatory elements within the non-coding DNA of a given organism's genome. The identification of functional cis-regulatory modules has proven difficult since the component factor binding sites are small and the rules governing their arrangement are poorly understood. However, the genomes of suitably diverged species help to predict regulatory elements based on the generally accepted assumption that conserved blocks of genomic sequence are likely to be functional. To judge the efficacy of strategies that prefilter by sequence conservation it is important to know to what extent the converse assumption holds, namely that functional elements common to both species will fall within these conserved blocks. The recently completed sequence of a second Drosophila species provides an opportunity to test this assumption for one of the experimentally best studied regulatory networks in multicellular organisms, the body patterning of the fly embryo. We find that 50%–70% of known binding sites reside in conserved sequence blocks, but these percentages are not greatly enriched over what is expected by chance. Finally, a computational genome-wide search in both species for regulatory modules based on clusters of binding sites suggests that genes central to the regulatory network are consistently recovered. Our results indicate that binding sites remain clustered for these "core modules" while not necessarily residing in conserved blocks. This is an important clue as to how regulatory information is encoded in the genome and how modules evolve.

104 citations


Proceedings ArticleDOI
11 Aug 2003
TL;DR: SMASH is a computational pipeline that identifies thousands of orthologous human/mouse proteins, maps them to genomic sequences, extracts and compares upstream regions and annotates putative regulatory elements in conserved, noncoding, upstream regions.
Abstract: Regulatory sequence elements provide important clues to understanding and predicting gene expression. Although the binding sites for hundreds of transcription factors are known, there has been no systematic attempt to incorporate this information in the annotation of the human genome. Cross species sequence comparisons are critical to a meaningful annotation of regulatory elements since they generally reside in conserved noncoding regions. To take advantage of the recently completed drafts of the mouse and human genomes for annotating transcription factor binding sites, we developed SMASH, a computational pipeline that identifies thousands of orthologous human/mouse proteins, maps them to genomic sequences, extracts and compares upstream regions and annotates putative regulatory elements in conserved, noncoding, upstream regions. Our current dataset consists of approximately 2500 human/mouse gene pairs. Transcription start sites were estimated by mapping quasifull length cDNA sequences. SMASH uses a novel probabilistic method to identify putative conserved binding sites that takes into account the competition between transcription factors for binding DNA. SMASH presents the results via a genome browser web interface which displays the predicted regulatory information together with the current annotations for the human genome. Our results are validated by comparison to previously published experimental data. SMASH results compare favorably to other existing computational approaches.

20 citations