scispace - formally typeset
Search or ask a question

Showing papers by "Parampreet Singh published in 2015"


Journal ArticleDOI
TL;DR: In this article, the Ricci tensor is analyzed for loop quantum cosmology and it is shown that the energy-momentum tensor that satisfies Einstein's field equations is the same as the one for the uniform electromagnetic field, albeit with a purely quantum geometric origin.
Abstract: The loop quantum dynamics of Kantowski–Sachs spacetime and the interior of higher genus black hole spacetimes with a cosmological constant has some peculiar features not shared by various other spacetimes in loop quantum cosmology. As in the other cases, though the quantum geometric effects resolve the physical singularity and result in a non-singular bounce, after the bounce a spacetime with small spacetime curvature does not emerge in either the subsequent backward or the forward evolution. Rather, in the asymptotic limit the spacetime manifold is a product of two constant curvature spaces. Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, their effective metric is a solution to Einstein's field equations. Analysis of the components of the Ricci tensor shows that after the singularity resolution, the Kantowski–Sachs spacetime leads to an effective metric which can be interpreted as the 'charged' Nariai, while the higher genus black hole interior can similarly be interpreted as an anti Bertotti–Robinson spacetime with a cosmological constant. These spacetimes are 'charged' in the sense that the energy–momentum tensor that satisfies Einstein's field equations is formally the same as the one for the uniform electromagnetic field, albeit it has a purely quantum geometric origin. The asymptotic spacetimes also have an emergent cosmological constant which is different in magnitude, and sometimes even its sign, from the cosmological constant in the Kantowski–Sachs and the interior of higher genus black hole metrics. With a fine tuning of the latter cosmological constant, we show that 'uncharged' Nariai, and anti Bertotti–Robinson spacetimes with a vanishing emergent cosmological constant can also be obtained.

59 citations


Journal ArticleDOI
TL;DR: In this paper, the Ricci tensor is analyzed in the context of loop quantum cosmology and it is shown that the energy momentum tensor that satisfies the Einstein's field equations is the same as the one for the uniform electromagnetic field, albeit with a purely quantum geometric origin.
Abstract: The loop quantum dynamics of Kantowski-Sachs spacetime and the interior of higher genus black hole spacetimes with a cosmological constant has some peculiar features not shared by various other spacetimes in loop quantum cosmology. As in the other cases, though the quantum geometric effects resolve the physical singularity and result in a non-singular bounce, after the bounce a spacetime with small spacetime curvature does not emerge in either the subsequent backward or the forward evolution. Rather, in the asymptotic limit the spacetime manifold is a product of two constant curvature spaces. Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, their effective metric is a solution to the Einstein's field equations. Analysis of the components of the Ricci tensor shows that after the singularity resolution, the Kantowski-Sachs spacetime leads to an effective metric which can be interpreted as the `charged' Nariai, while the higher genus black hole interior can similarly be interpreted as anti Bertotti-Robinson spacetime with a cosmological constant. These spacetimes are `charged' in the sense that the energy momentum tensor that satisfies the Einstein's field equations is formally the same as the one for the uniform electromagnetic field, albeit it has a purely quantum geometric origin. The asymptotic spacetimes also have an emergent cosmological constant which is different in magnitude, and sometimes even its sign, from the cosmological constant in the Kantowski-Sachs and the interior of higher genus black hole metrics. With a fine tuning of the latter cosmological constant, we show that `uncharged' Nariai, and anti Bertotti-Robinson spacetimes with a vanishing emergent cosmological constant can also be obtained.

52 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate the behavior of expansion and shear scalars in different proposed quantizations of the Kantowski-Sachs spacetime with matter in loop quantum cosmology, and find that out of various proposed choices, there is only one known prescription which leads to the generic bounded behavior of these scalars.
Abstract: Using effective dynamics, we investigate the behavior of expansion and shear scalars in different proposed quantizations of the Kantowski–Sachs spacetime with matter in loop quantum cosmology. We find that out of the various proposed choices, there is only one known prescription which leads to the generic bounded behavior of these scalars. The bounds turn out to be universal and are determined by the underlying quantum geometry. This quantization is analogous to the so called ‘improved dynamics’ in the isotropic loop quantum cosmology, which is also the only one to respect the freedom of the rescaling of the fiducial cell at the level of effective spacetime description. Other proposed quantization prescriptions yield expansion and shear scalars which may not be bounded for certain initial conditions in effective dynamics. These prescriptions also have a limitation that the ‘quantum geometric effects’ can occur at an arbitrary scale. We show that the ‘improved dynamics’ of Kantowski–Sachs spacetime turns out to be a unique choice in a general class of possible quantization prescriptions, in the sense of leading to generic bounds on expansion and shear scalars and the associated physics being free from fiducial cell dependence. The behavior of the energy density in the ‘improved dynamics’ reveals some interesting features. Even without considering any details of the dynamical evolution, it is possible to rule out pancake singularities in this spacetime. The energy density is found to be dynamically bounded. These results show that the Planck scale physics of the loop quantized Kantowski–Sachs spacetime has key features common with the loop quantization of isotropic and Bianchi-I spacetimes.

49 citations


Journal ArticleDOI
TL;DR: In this paper, a quantum theory for the Schwarzschild interior region of a white-hole spacetime is presented. But it is not a quantum model for the singularity and its effective dynamics possesses a bounce into an expanding regime, and a semiclassical spacetime satisfying vacuum Einstein's equations is recovered.
Abstract: The loop quantization of the Schwarzschild interior region, as described by a homogeneous anisotropic Kantowski-Sachs model, is re-examined. As several studies of different -inequivalent- loop quantizations have shown, to date there exists no fully satisfactory quantum theory for this model. This fact poses challenges to the validity of some scenarios to address the black hole information problem. Here we put forward a novel viewpoint to construct the quantum theory that builds from some of the models available in the literature. The final picture is a quantum theory that is both independent of any auxiliary structure and possesses a correct low curvature limit. It represents a subtle but non-trivial modification of the original prescription given by Ashtekar and Bojowald. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein's equations is recovered on the "other side" of the bounce. We argue that such metric represents the interior region of a white-hole spacetime, but for which the corresponding "white-hole mass" differs from the original black hole mass. Furthermore, we find that the value of the white-hole mass is proportional to the third power of the starting black hole mass.

38 citations


Journal ArticleDOI
TL;DR: The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann-Robertson-Walker models as discussed by the authors.
Abstract: The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann-Robertson-Walker models. Modifications to Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on their sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy condition, or more attractive than in the classical theory. Canonical structure of the modified theories is determined demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse trigonometric function of Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum cosmology. The repulsive cubic modification results in a `generalized polymerized' canonical phase space. Both of the repulsive modifications are found to yield singularity avoidance. In contrast, the quadratic and cubic attractive modifications result in a canonical phase space in which canonical momentum is non-trigonometric and singularities persist. Our results hint on connections between repulsive/attractive nature of modifications to gravity arising from gravitational sector and polymerized/non-polymerized gravitational phase space.

23 citations


Posted Content
TL;DR: In this paper, the authors show how quantum gravitational effects can lead to universal bounds on the energy density, the Hubble rate and the anisotropic shear of a cosmological model.
Abstract: Singularities in general relativity such as the big bang and big crunch, and exotic singularities such as the big rip are the boundaries of the classical spacetimes. These events are marked by a divergence in the curvature invariants and the breakdown of the geodesic evolution. Recent progress on implementing techniques of loop quantum gravity to cosmological models reveals that such singularities may be generically resolved because of the quantum gravitational effects. Due to the quantum geometry, which replaces the classical differential geometry at the Planck scale, the big bang is replaced by a big bounce without any assumptions on the matter content or any fine tuning. In this manuscript, we discuss some of the main features of this approach and the results on the generic resolution of singularities for the isotropic as well as anisotropic models. Using effective spacetime description of the quantum theory, we show the way quantum gravitational effects lead to the universal bounds on the energy density, the Hubble rate and the anisotropic shear. We discuss the geodesic completeness in the effective spacetime and the resolution of all of the strong singularities. It turns out that despite the bounds on energy density and the Hubble rate, there can be divergences in the curvature invariants. However such events are geodesically extendible, with tidal forces not strong enough to cause inevitable destruction of the in-falling objects.

10 citations