scispace - formally typeset
Search or ask a question

Showing papers by "Patricia Dolan published in 2011"


Journal ArticleDOI
TL;DR: Local biomechanical factors in the etiology of vertebral compression fractures are reviewed and cement injection techniques such as vertebroplasty and kyphoplasty are valuable in the treatment of these fractures.
Abstract: Local biomechanical factors in the etiology of vertebral compression fractures are reviewed. The vertebral body is particularly vulnerable to compression fracture when its bone mineral density (BMD) falls with age. However, the risk of fracture, and the type of fracture produced, does not depend simply on BMD. Equally important is the state of degeneration of the adjacent intervertebral discs, which largely determines how compressive forces are distributed over the vertebral body. Disc height also influences load-sharing between the vertebral body and neural arch, and hence by Wolff's Law can influence regional variations in trabecular density within the vertebral body. Vertebral deformity is not entirely attributable to trauma: it can result from the gradual accumulation of fatigue damage, and can progress by a quasi-continuous process of "creep". Cement injection techniques such as vertebroplasty and kyphoplasty are valuable in the treatment of these fractures. Both techniques can stiffen a fractured vertebral body, and kyphoplasty may contribute towards restoring its height. The presence of cement can limit endplate deformation, and thereby partially reverse the adverse changes in load-sharing which follow vertebral fracture. Cement also reduces time-dependent "creep" deformation of damaged vertebrae.

63 citations


Journal ArticleDOI
01 May 2011-Spine
TL;DR: Vertebral body osteophytes resist bending movements more than compression and could cause clinical BMD measurements to underestimate vertebral compressive strength, suggesting they seem to be adaptive rather than degenerative.
Abstract: Study Design. Mechanical testing of cadaveric spines. Objective. To determine whether vertebral body osteophytes act primarily to reduce compressive stress on the intervertebral discs, or to stabilize the spine in bending. Summary of Background Data. The mechanical significance of vertebral osteophytes is unclear. Methods. Thoracolumbar spines were obtained from cadavers, aged 51 to 92 years, with vertebral body osteophytes, mostly anterolateral. Twenty motion segments, from T5–T6 to L3–L4, were loaded in compression to 1.5 kN, and then in flexion, extension, and lateral bending to 10 to 25 Nm (depending on specimen size) with a compressive preload. Vertebral movements were tracked using an optical 2-dimensional MacReflex system. Tests were performed in random order, and were repeated after excision of all osteophytes. Osteophyte function was inferred from (a) changes in the force or moment resisted and (b) changes in tangent stiffness, measured at maximum displacement or rotation angle. Volumetric bone mineral density (BMD) was measured using dual photon x-ray absorptiometry and water immersion. Results were analyzed using repeated measures analysis of variance. Results. Resistance to compression was reduced by an average of 17% after osteophyte removal (P < 0.05), and resistance to bending moment in flexion, extension, and left and right lateral bending was reduced by 49%, 36%, 36%, and 35%, respectively (all P < 0.01). Changes in tangent stiffness were similar. Osteophyte removal increased the neutral zone in bending (P < 0.05) and, on average, reduced motion segment BMD by 7% to 9%. Results were insensitive to applied loads and moments, but several changes were proportional to osteophyte size. Conclusion. Vertebral body osteophytes resist bending movements more than compression. Because they reverse the instability in bending that can stimulate their formation, these osteophytes seem to be adaptive rather than degenerative. Results suggest that osteophytes could cause clinical BMD measurements to underestimate vertebral compressive strength.

55 citations


Journal ArticleDOI
TL;DR: Power in the low frequency part of the EMG power spectrum increases with fatigue in a load-dependent manner and the rate of change in low frequency power may be a useful indicator of fatigue rate or "fatigability" in the back muscles.

21 citations