scispace - formally typeset
Search or ask a question

Showing papers by "Paul G. Tratnyek published in 2015"


Journal ArticleDOI
TL;DR: The time-resolved spectroscopy of manganese species under various conditions, stoichiometric analysis of pH changes, and the effect of pyrophosphate on UV absorbance spectra suggest that the reactive intermediate(s) responsible for the extremely rapid oxidation of organic contaminants in the PM/BS process involveManganese(III) species with minimal stabilization by complexation.
Abstract: MnO4(-) was activated by HSO3(-), resulting in a process that oxidizes organic contaminants at extraordinarily high rates. The permanganate/bisulfite (PM/BS) process oxidized phenol, ciprofloxacin, and methyl blue at pHini 5.0 with rates (kobs ≈ 60-150 s(-1)) that were 5-6 orders of magnitude faster than those measured for permanganate alone, and ∼5 to 7 orders of magnitude faster than conventional advanced oxidation processes for water treatment. Oxidation of phenol was fastest at pH 4.0, but still effective at pH 7.0, and only slightly slower when performed in tap water. A smaller, but still considerable (∼3 orders of magnitude) increase in oxidation rates of methyl blue was observed with MnO2 activated by HSO3(-) (MO/BS). The above results, time-resolved spectroscopy of manganese species under various conditions, stoichiometric analysis of pH changes, and the effect of pyrophosphate on UV absorbance spectra suggest that the reactive intermediate(s) responsible for the extremely rapid oxidation of organic contaminants in the PM/BS process involve manganese(III) species with minimal stabilization by complexation. The PM/BS process may lead to a new category of advanced oxidation technologies based on contaminant oxidation by reactive manganese(III) species, rather than hydroxyl and sulfate radicals.

228 citations


Journal ArticleDOI
TL;DR: Current practice for both direct and indirect characterizations of nZVI during groundwater remediation are reviewed and prospects for improving these methods and/or refining the interpretation of these measurements are explored.

84 citations


Journal ArticleDOI
TL;DR: For most reductants, the results are inconsistent with simple rate limitation by an initial, outer-sphere electron transfer, suggesting that the linear correlation between log(k) and E1NAC is best regarded as an empirical model.
Abstract: The evaluation of new energetic nitroaromatic compounds (NACs) for use in green munitions formulations requires models that can predict their environmental fate. Previously invoked linear free energy relationships (LFER) relating the log of the rate constant for this reaction (log(k)) and one-electron reduction potentials for the NAC (E1NAC) normalized to 0.059 V have been re-evaluated and compared to a new analysis using a (nonlinear) free-energy relationship (FER) based on the Marcus theory of outer-sphere electron transfer. For most reductants, the results are inconsistent with simple rate limitation by an initial, outer-sphere electron transfer, suggesting that the linear correlation between log(k) and E1NAC is best regarded as an empirical model. This correlation was used to calibrate a new quantitative structure–activity relationship (QSAR) using previously reported values of log(k) for nonenergetic NAC reduction by Fe(II) porphyrin and newly reported values of E1NAC determined using density functio...

44 citations


Journal ArticleDOI
TL;DR: Improved understanding of CMC-nZVI fate requires methods with greater specificity for Fe(0), less vulnerability to sampling/recovery artifacts, and more practical application in the field.
Abstract: Nano zerovalent iron synthesized with carboxymethylcelluose (CMC-nZVI) is among the leading formulations of nZVI currently used for in situ groundwater remediation. The main advantage of CMC-nZVI is that it forms stable suspensions, which are relatively mobile in porous media. Rapid contaminant reduction by CMC-nZVI is well documented, but the fate of the CMC-nZVI (including “aging” and “reductant demand”) is not well characterized. Improved understanding of CMC-nZVI fate requires methods with greater specificity for Fe(0), less vulnerability to sampling/recovery artifacts, and more practical application in the field. These criteria can be met with a simple and specific colorimetric approach using indigo-5,5′-disulfonate (I2S) as a chemical redox probe (CRP). The measured stoichiometric ratio for reaction between I2S and nZVI is 1.45 ± 0.03, suggesting complete oxidation of nZVI to Fe(III) species. However, near pH 7, reduction of I2S is diagnostic for Fe(0), because aqueous Fe(II) reduces I2S much more s...

38 citations