scispace - formally typeset
Search or ask a question

Showing papers by "Pengwei Xie published in 2019"


Journal ArticleDOI
TL;DR: In this article, a simulation study of the expected background in PandaX-4T is presented, where the authors show that in a 2.8-ton fiducial mass and the signal region between 1-10 keV electron equivalent energy, the total electron recoil background is found to be$\\rm~4.9\\times~10-5}kg^{-1}d^{- 1}keV
Abstract: The PandaX-4T experiment, a 4-ton scale dark matter direct detection experiment, is being planned at the China Jinping Underground Laboratory. In this paper we present a simulation study of the expected background in this experiment. In a 2.8-ton fiducial mass and the signal region between 1-10 keV electron equivalent energy, the total electron recoil background is found to be$\\rm~4.9\\times~10^{-5}kg^{-1}d^{-1}keV^{-1}$. The nuclear recoil background in the same region is $\\rm~2.8\\times~10^{-7}kg^{-1}d^{-1}keV^{-1}$. With an exposure of 5.6 ton-years, the sensitivity of PandaX-4T could reach a minimum spin-independent dark matter-nucleon cross section of $\\rm~6\\times~10^{-48}cm^2$ at a dark matter mass of 40 GeV/$c^2$.

176 citations


Journal ArticleDOI
TL;DR: In this article, the authors present PandaX-II constraints on candidate WIMP-nucleon effective interactions involving the nucleon or WimP spin, including, in addition, standard axial spin-dependent scattering, various couplings among vector and axial currents, magnetic and electric dipole moments, and tensor interactions.

61 citations


Journal ArticleDOI
TL;DR: In this paper, the Neutrino-less Double Beta Decay (NLDBD) search results from PandaX-II dual-phase liquid xenon time projection chamber were reported.
Abstract: We report the Neutrino-less Double Beta Decay (NLDBD) search results from PandaX-II dual-phase liquid xenon time projection chamber. The total live time used in this analysis is 403.1 days from June 2016 to August 2018. With NLDBD-optimized event selection criteria, we obtain a fiducial mass of 219 kg of natural xenon. The accumulated xenon exposure is 242 kg·yr, or equivalently 22.2 kg·yr of 136Xe exposure. At the region around 136Xe decay Q-value of 2458 keV, the energy resolution of PandaX-II is 4.2%. We find no evidence of NLDBD in PandaX-II and establish a lower limit for decay half-life of 2.1 \begin{document}$ \times 10^{23} $\end{document} yr at the 90% confidence level, which corresponds to an effective Majorana neutrino mass \begin{document}$m_{\beta \beta} eV. This is the first NLDBD result reported from a dual-phase xenon experiment.

22 citations


Posted Content
TL;DR: In this article, the authors presented an improved evaluation of the neutron background in the PandaX-II dark matter experiment by a novel approach, instead of fully relying on the Monte Carlo simulation, the overall neutron background is determined from the neutron-induced high energy signals in the data.
Abstract: In dark matter direct detection experiments, neutron is a serious source of background, which can mimic the dark matter-nucleus scattering signals. In this paper, we present an improved evaluation of the neutron background in the PandaX-II dark matter experiment by a novel approach. Instead of fully relying on the Monte Carlo simulation, the overall neutron background is determined from the neutron-induced high energy signals in the data. In addition, the probability of producing a dark-matter-like background per neutron is evaluated with a complete Monte Carlo generator, where the correlated emission of neutron(s) and $\gamma$(s) in the ($\alpha$, n) reactions and spontaneous fissions is taken into consideration. With this method, the neutron backgrounds in the Run 9 (26-ton-day) and Run 10 (28-ton-day) data sets of PandaX-II are estimated to be 0.66$\pm$0.24 and 0.47$\pm$0.25 events, respectively.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the Neutrino-less Double Beta Decay (NLDBD) search results from PandaX-II dual-phase liquid xenon time projection chamber were reported.
Abstract: We report the Neutrino-less Double Beta Decay (NLDBD) search results from PandaX-II dual-phase liquid xenon time projection chamber. The total live time used in this analysis is 403.1 days from June 2016 to August 2018. With NLDBD-optimized event selection criteria, we obtain a fiducial mass of 219 kg of natural xenon. The accumulated xenon exposure is 242 kg$\cdot$yr, or equivalently 22.2 kg$\cdot$yr of $^{136}$Xe exposure. At the region around $^{136}$Xe decay Q-value of 2458 keV, the energy resolution of PandaX-II is 4.2%. We find no evidence of NLDBD in PandaX-II and establish a lower limit for decay half-life of 2.4 $ \times 10^{23} $ yr at the 90% confidence level, which corresponds to an effective Majorana neutrino mass $m_{\beta \beta} < (1.3 - 3.5)$ eV. This is the first NLDBD result reported from a dual-phase xenon experiment.