Author
Peter Grassberger
Other affiliations: University of Nice Sophia Antipolis, University College West, University of California, Santa Barbara ...read more
Bio: Peter Grassberger is an academic researcher from Max Planck Society. The author has contributed to research in topics: Critical exponent & Percolation. The author has an hindex of 76, co-authored 375 publications receiving 33804 citations. Previous affiliations of Peter Grassberger include University of Nice Sophia Antipolis & University College West.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the correlation exponent v is introduced as a characteristic measure of strange attractors which allows one to distinguish between deterministic chaos and random noise, and algorithms for extracting v from the time series of a single variable are proposed.
Abstract: We study the correlation exponent v introduced recently as a characteristic measure of strange attractors which allows one to distinguish between deterministic chaos and random noise. The exponent v is closely related to the fractal dimension and the information dimension, but its computation is considerably easier. Its usefulness in characterizing experimental data which stem from very high dimensional systems is stressed. Algorithms for extracting v from the time series of a single variable are proposed. The relations between the various measures of strange attractors and between them and the Lyapunov exponents are discussed. It is shown that the conjecture of Kaplan and Yorke for the dimension gives an upper bound for v. Various examples of finite and infinite dimensional systems are treated, both numerically and analytically.
5,239 citations
TL;DR: In this article, a measure of strange attractors is introduced which offers a practical algorithm to determine their character from the time series of a single observable, and the relation of this measure to fractal dimension and information-theoretic entropy is discussed.
Abstract: A new measure of strange attractors is introduced which offers a practical algorithm to determine their character from the time series of a single observable. The relation of this new measure to fractal dimension and information-theoretic entropy is discussed.
4,323 citations
TL;DR: Two classes of improved estimators for mutual information M(X,Y), from samples of random points distributed according to some joint probability density mu(x,y), based on entropy estimates from k -nearest neighbor distances are presented.
Abstract: We present two classes of improved estimators for mutual information M(X,Y), from samples of random points distributed according to some joint probability density mu(x,y). In contrast to conventional estimators based on binnings, they are based on entropy estimates from k -nearest neighbor distances. This means that they are data efficient (with k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to nonuniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/N for N points. Numerically, we find that both families become exact for independent distributions, i.e. the estimator M(X,Y) vanishes (up to statistical fluctuations) if mu(x,y)=mu(x)mu(y). This holds for all tested marginal distributions and for all dimensions of x and y. In addition, we give estimators for redundancies between more than two random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.
3,224 citations
TL;DR: In this paper, a method for estimating the Kolmogorov entropy directly from a time signal is proposed and tested on examples, which should prove valuable for characterizing experimental chaotic signals.
Abstract: A new method for estimating the Kolmogorov entropy directly from a time signal is proposed and tested on examples. The method should prove valuable for characterizing experimental chaotic signals.
1,294 citations
TL;DR: In this article, it was shown that there is an infinity of generalized dimensions for strange attractors, related to the order-q Renyi entropies, and that these dimensions are monotonically decreasing with q.
Abstract: It is pointed out that there exists an infinity of generalized dimensions for strange attractors, related to the order-q Renyi entropies. They are monotonically decreasing with q. For q = 0, 1 and 2, they are the capacity, the information dimension, and the correlation exponent, respectively. For all q, they are measurable from recurrence times in a time series, without need for a box-counting algorithm. For the Feigenbaum map and for the generalized Baker transformation, all generalized dimensions are finite and calculable, and depend non-trivially on q.
861 citations
Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。
18,940 citations
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
17,647 citations
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
Abstract: Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web, are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering. © 2005 Elsevier B.V. All rights reserved.
9,441 citations
TL;DR: In this article, the authors present the first algorithms that allow the estimation of non-negative Lyapunov exponents from an experimental time series, which provide a qualitative and quantitative characterization of dynamical behavior.
Abstract: We present the first algorithms that allow the estimation of non-negative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov exponents is defined to be chaotic. Our method is rooted conceptually in a previously developed technique that could only be applied to analytically defined model systems: we monitor the long-term growth rate of small volume elements in an attractor. The method is tested on model systems with known Lyapunov spectra, and applied to data for the Belousov-Zhabotinskii reaction and Couette-Taylor flow.
8,128 citations
[...]
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.
7,116 citations