scispace - formally typeset
Search or ask a question

Showing papers by "Peter J. Rossky published in 2013"


Journal ArticleDOI
TL;DR: This real-time view of hot CT exciton formation and relaxation using femtosecond nonlinear optical spectroscopies and non-adiabatic mixed quantum mechanics/molecular mechanics simulations in the phthalocyanine-fullerene model OPV system sets the fundamental time limit for competitive charge separation channels that lead to efficient photocurrent generation.
Abstract: Photocurrent generation in organic solar cells relies on the dissociation of excitons into free electrons and holes at donor/acceptor heterointerfaces. Femtosecond spectroscopy and non-adiabatic simulations on the phthalocyanine–fullerene model system now reveal the relaxation dynamics of hot charge-transfer excitons in this process.

613 citations


Journal ArticleDOI
TL;DR: It is shown that weak, reversible electronic perturbation of graphene by the fluoropolymer favorably tune the electrical characteristics of graphene, and it is hypothesized that the origin of this improvement is in the strongly polar nature of the C-F chemical bonds that self-organize upon heat treatment.
Abstract: We report on the improvement of the electronic characteristics of monolayer graphene field-effect transistors (FETs) by an interacting capping layer of a suitable fluoropolymer. Capping of monolayer graphene FETs with CYTOP improved the on–off current ratio from 5 to 10 as well as increased the field-effect mobility by as much as a factor of 2 compared to plain graphene FETs. Favorable shifts in the Dirac voltage toward zero with shift magnitudes in excess of 60 V are observed. The residual carrier concentration is reduced to ∼2.8 × 1011 cm–2. Removal of the fluoropolymer from graphene FETs results in a return to the initial electronic properties before depositing CYTOP. This suggests that weak, reversible electronic perturbation of graphene by the fluoropolymer favorably tune the electrical characteristics of graphene, and we hypothesize that the origin of this improvement is in the strongly polar nature of the C–F chemical bonds that self-organize upon heat treatment. We demonstrate a general method to ...

41 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the distribution of side chains strongly affects the polymer-chain conformation, even at the single-molecule level, an aspect that has important implications when interpreting the macroscopic interchain packing structure exhibited by bulk polymer films.
Abstract: The spatial arrangement of the side chains of conjugated polymer backbones has critical effects on the morphology and electronic and photophysical properties of the corresponding bulk films. The effect of the side-chain-distribution density on the conformation at the isolated single-polymer-chain level was investigated with regiorandom (rra-) poly(3-hexylthiophene) (P3HT) and poly(3-hexyl-2,5-thienylene vinylene) (P3HTV). Although pure P3HTV films are known to have low fluorescence quantum efficiencies, we observed a considerable increase in fluorescence intensity by dispersing P3HTV in poly(methyl methacrylate) (PMMA), which enabled a single-molecule spectroscopy investigation. With single-molecule fluorescence excitation polarization spectroscopy, we found that rra-P3HTV single molecules form highly ordered conformations. In contrast, rra-P3HT single molecules, display a wide variety of different conformations from isotropic to highly ordered, were observed. The experimental results are supported by extensive molecular dynamics simulations, which reveal that the reduced side-chain-distribution density, that is, the spaced-out side-chain substitution pattern, in rra-P3HTV favors more ordered conformations compared to rra-P3HT. Our results demonstrate that the distribution of side chains strongly affects the polymer-chain conformation, even at the single-molecule level, an aspect that has important implications when interpreting the macroscopic interchain packing structure exhibited by bulk polymer films.

29 citations


Journal ArticleDOI
TL;DR: It is found that the Jagla liquid captures the qualitative thermodynamic behavior of hydrophobic hydration as a function of temperature for both small and large length scale solutes, and how aggregate stability depends upon the size of the aggregate and thesize of its constituent solutes is related to cold-induced destabilization phenomena.
Abstract: The temperature and length scale dependence of solvation properties of spherical hard solvophobic solutes is investigated in the Jagla liquid, a simple liquid that consists of particles interacting via a spherically symmetric potential combining a hard core repulsion and a longer ranged soft core interaction, yet exhibits water-like anomalies. The results are compared with equivalent calculations for a model of a typical atomic liquid, the Lennard-Jones potential, and with predictions for hydrophobic solvation in water using the cavity equation of state and the extended simple point charge model. We find that the Jagla liquid captures the qualitative thermodynamic behavior of hydrophobic hydration as a function of temperature for both small and large length scale solutes. In particular, for both the Jagla liquid and water, we observe temperature-dependent enthalpy and entropy of solvation for all solute sizes as well as a negative solvation entropy for sufficiently small solutes at low temperature. This feature of water-like solvation is distinct from the strictly positive and temperature independent enthalpy and entropy of cavity solvation observed in the Lennard-Jones fluid. The results suggest that, compared to a simple liquid, it is the presence of a second thermally accessible repulsive energy scale, acting to increasingly favor larger separations for decreasing temperature, that is the essential characteristic of a liquid that favors low-density, open structures, and models hydrophobic hydration, and that it is the presence of this second energy scale that leads to the similarity in the behavior of water and the Jagla liquid. In addition, the Jagla liquid dewets surfaces of large radii of curvature less readily than the Lennard-Jones liquid, reflecting a greater flexibility or elasticity in the Jagla liquid structure than that of a typical liquid, a behavior also similar to that of water's hydrogen bonding network. The implications of the temperature and length scale dependence of solvation free energies in water-like liquids are explored with a simple model for the aggregation of solvophobic solutes. We show how aggregate stability depends upon the size of the aggregate and the size of its constituent solutes, and we relate this dependence to cold-induced destabilization phenomena such as the cold-induced denaturation of proteins.

17 citations


Journal ArticleDOI
TL;DR: Using Monte Carlo simulations, a free space two-letter protein (“H-P”) model is proposed in a simple, but qualitatively accurate description for water, the Jagla model, which coarse-grains water into an isotropically interacting sphere.
Abstract: Simulations employing an explicit atom description of proteins in solvent can be computationally expensive. On the other hand, coarse-grained protein models in implicit solvent miss essential features of the hydrophobic effect, especially its temperature dependence, and have limited ability to capture the kinetics of protein folding. We propose a free space two-letter protein (“H-P”) model in a simple, but qualitatively accurate description for water, the Jagla model, which coarse-grains water into an isotropically interacting sphere. Using Monte Carlo simulations, we design protein-like sequences that can undergo a collapse, exposing the “Jagla-philic” monomers to the solvent, while maintaining a “hydrophobic” core. This protein-like model manifests heat and cold denaturation in a manner that is reminiscent of proteins. While this protein-like model lacks the details that would introduce secondary structure formation, we believe that these ideas represent a first step in developing a useful, but computationally expedient, means of modeling proteins.

13 citations


Journal ArticleDOI
TL;DR: This work uses ring-polymer-molecular-dynamics techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the characteristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster.
Abstract: We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the characteristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H2O]8 at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydrogen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high frequency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parameterized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynamics, as reported by instantaneous normal modes, are also discussed.

13 citations


Journal ArticleDOI
TL;DR: Ring polymer molecular dynamics experiments have been carried out to examine effects derived from nuclear quantum fluctuations at ambient conditions on equilibrium and non-equilibrium dynamical characteristics of charge solvation by a popular simple, rigid, water model, SPC/E, and for a more recent, and flexible, q-TIP4P/F model to examine the generality of conclusions.
Abstract: Ring polymer molecular dynamics experiments have been carried out to examine effects derived from nuclear quantum fluctuations at ambient conditions on equilibrium and non-equilibrium dynamical characteristics of charge solvation by a popular simple, rigid, water model, SPC/E , and for a more recent, and flexible, q-TIP4P/F model, to examine the generality of conclusions. In particular, we have recorded the relaxation of the solvent energy gap following instantaneous, ±e charge jumps in an initially uncharged Lennard-Jones-like solute. In both charge cases, quantum effects are reflected in sharper decays at the initial stages of the relaxation, which produce up to a ∼20% reduction in the characteristic timescales describing the solvation processes. For anionic solvation, the magnitude of polarization fluctuations controlling the extent of the water proton localization in the first solvation shell is somewhat more marked than for cations, bringing the quantum solvation process closer to the classical case. Effects on the solvation response from the explicit incorporation of flexibility in the water Hamiltonian are also examined. Predictions from linear response theories for the overall relaxation profile and for the corresponding characteristic timescales are reasonably accurate for the solvation of cations, whereas we find that they are much less satisfactory for the anionic case.

8 citations


Proceedings ArticleDOI
01 Dec 2013
TL;DR: In this article, the authors report on the substantial improvement of the electronic characteristics of field effect transistors (FETs) based on CVD graphene, reduced graphene oxide (RGO), and molybdenum disulfide (MoS2) by an interacting capping layer of appropriate amorphous or polycrystalline fluoropolymers.
Abstract: We report on the substantial improvement of the electronic characteristics of field-effect transistors (FETs) based on chemical vapor deposition (CVD) graphene, reduced graphene oxide (RGO), and molybdenum disulfide (MoS2) by an interacting capping layer of appropriate amorphous or polycrystalline fluoropolymers. All the key 2-dimensional device properties are improved including mobilities, on-off current ratio, electron-hole transport symmetry, Dirac voltage, and reduced residual carrier density.

2 citations