scispace - formally typeset
Search or ask a question

Showing papers by "Peter J. Rossky published in 2018"


Journal ArticleDOI
TL;DR: The atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT this is not the case.
Abstract: The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (∼2,000 cm −1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron−hole polarization.

37 citations


Journal ArticleDOI
Lena Simine1, Heiko Lammert1, Li Sun1, José N. Onuchic1, Peter J. Rossky1 
TL;DR: A map of fluorescence quantum yield is constructed as a function of a 2D electric field imposed by the protein environment on the fluorophore and it is used in combination with steered MD simulations to put forward a hypothesis for the mechanism of a genetically encoded voltage probe (ArcLight) whose mechanism is currently under debate.
Abstract: The rational design of genetically encoded fluorescent biosensors, which can detect rearrangements of target proteins via interdomain allostery, is hindered by the absence of mechanistic understanding of the underlying photophysics. Here, we focus on the modulation of fluorescence by mechanical perturbation in a popular biological probe: enhanced Green Fluorescent Protein (eGFP). Using a combination of molecular dynamics (MD) simulations and quantum chemistry, and a set of physically motivated assumptions, we construct a map of fluorescence quantum yield as a function of a 2D electric field imposed by the protein environment on the fluorophore. This map is transferable between Tsien’s Class 2 GFP’s, and it allows one to estimate the shifts in fluorescence intensity due to mechanical perturbations directly from MD simulations. We use it in combination with steered MD simulations to put forward a hypothesis for the mechanism of a genetically encoded voltage probe (ArcLight) whose mechanism is currently unde...

13 citations


Journal ArticleDOI
TL;DR: The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies.
Abstract: We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X− and HOD⋯ X− (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F− case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X− preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O–H⋯X− axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectr...

10 citations


Journal ArticleDOI
TL;DR: By combining path-integrals molecular dynamics simulations with the accurate MB-pol potential energy surface, this work investigates the role of alternative potential models on isotopic fractionation ratios between H and D atoms at dangling positions in water clusters at low temperatures.
Abstract: By combining path-integrals molecular dynamics simulations with the accurate MB-pol potential energy surface, we investigate the role of alternative potential models on isotopic fractionation ratios between H and D atoms at dangling positions in water clusters at low temperatures. Our results show clear stabilizations of the lighter isotope at dangling sites, characterized by free energy differences ΔG that become comparable to or larger than kBT for temperatures below ∼75 K. The comparison between these results to those previously reported using the empirical q-TIP4P/F water model [P. E. Videla et al., J. Phys. Chem. Lett. 5, 2375 (2014)] reveals that the latter Hamiltonian overestimates the H stabilization by ∼25%. Moreover, predictions from the MB-pol model are in much better agreement with measured results reported for similar isotope equilibria at ice surfaces. The dissection of the quantum kinetic energies into orthogonal directions shows that the dominant differences between the two models are to be found in the anharmonic characteristics of the potential energy surfaces along OH bond directions involved in hydrogen bonds.

9 citations