scispace - formally typeset
Search or ask a question

Showing papers by "Peter Klatt published in 2004"


Journal ArticleDOI
TL;DR: It is indicated that modest increases in the activity of the Ink4a/Arf tumor suppressor result in a beneficial cancer-resistant phenotype without affecting normal viability or aging.
Abstract: Mammalian genes frequently present allelic variants that differ in their expression levels and that, in the case of tumor suppressor genes, can be of relevance for cancer susceptibility and aging. We report here the characterization of a novel mouse model with increased activity for the Ink4a and Arf tumor suppressors. We have generated a "super Ink4a/Arf" mouse strain carrying a transgenic copy of the entire Ink4a/Arf locus. Cells derived from super Ink4a/Arf mice have increased resistance to in vitro immortalization and oncogenic transformation. Importantly, super Ink4a/Arf mice manifest higher resistance to cancer compared to normal, nontransgenic, mice. Finally, super Ink4a/Arf mice have normal aging and lifespan. Together, these results indicate that modest increases in the activity of the Ink4a/Arf tumor suppressor result in a beneficial cancer-resistant phenotype without affecting normal viability or aging.

132 citations


Journal ArticleDOI
TL;DR: It is observed that DNA‐ PKcs‐defective mice had a shorter life span and showed an earlier onset of ageing‐related pathologies than the corresponding wild‐type littermates, and DNA‐PKcs ablation was associated with a markedly higher incidence of T lymphomas and infections.
Abstract: Non-homologous end joining (NHEJ) is the principal repair mechanism used by mammalian cells to cope with double-strand breaks (DSBs) that continually occur in the genome. One of the key components of the mammalian NHEJ machinery is the DNA-PK complex, formed by the Ku86/70 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs). Here, we report on the detailed life-long follow-up of DNA-PKcs-defective mice. Apart from defining a role of DNA-PKcs in telomere length maintenance in the context of the ageing organism, we observed that DNA-PKcs-defective mice had a shorter life span and showed an earlier onset of ageing-related pathologies than the corresponding wild-type littermates. In addition, DNA-PKcs ablation was associated with a markedly higher incidence of T lymphomas and infections. In conclusion, these data link the dual role of DNA-PKcs in DNA repair and telomere length maintenance to organismal ageing and cancer.

124 citations


Journal ArticleDOI
TL;DR: The notion that absence of telomerase and short telomeres in combination with DNA repair deficiencies accelerate the aging process without impacting on tumorigenesis is supported.
Abstract: The DNA repair proteins poly(ADP-ribose) polymerase-1 (PARP-1), Ku86, and catalytic subunit of DNA-PK (DNA-PKcs) have been involved in telomere metabolism. To genetically dissect the impact of these activities on telomere function, as well as organismal cancer and aging, we have generated mice doubly deficient for both telomerase and any of the mentioned DNA repair proteins, PARP-1, Ku86, or DNA-PKcs. First, we show that abrogation of PARP-1 in the absence of telomerase does not affect the rate of telomere shortening, telomere capping, or organismal viability compared with single telomerase-deficient controls. Thus, PARP-1 does not have a major role in telomere metabolism, not even in the context of telomerase deficiency. In contrast, mice doubly deficient for telomerase and either Ku86 or DNA-PKcs manifest accelerated loss of organismal viability compared with single telomerase-deficient mice. Interestingly, this loss of organismal viability correlates with proliferative defects and age-related pathologies, but not with increased incidence of cancer. These results support the notion that absence of telomerase and short telomeres in combination with DNA repair deficiencies accelerate the aging process without impacting on tumorigenesis.

92 citations