scispace - formally typeset
Search or ask a question

Showing papers by "Philip Geoffrey Saffman published in 1956"


Journal ArticleDOI
TL;DR: In this paper, a theory of collisions between small drops in a turbulent fluid which takes into account collisions between equal drops was proposed, and it was shown that the collision rate due to the spatial variations of turbulent velocity is N = 1.30(r_1 + r_2)^2(n_1n_2)(e | v)^(1/2), valid for r_1|r_2 between one and two.
Abstract: This paper proposes a theory of collisions between small drops in a turbulent fluid which takes into account collisions between equal drops. The drops considered are much smaller than the small eddies of the turbulence and so the collision rates depend only on the dimensions of the drops, the rate of energy dissipation e and the kinematic viscosity v. Reasons are given for believing that the collision rate due to the spatial variations of turbulent velocity is shown to be N = 1.30(r_1 + r_2)^2(n_1n_2)(e | v)^(1/2), valid for r_1|r_2between one and two. A numerical integration has been performed using this expression to show how an initially uniform distribution will change because of collisions. An approximate calculation is then made to take account also of collisions which occur between drops of different inertia because of the action of gravity and the turbulent accelerations. The results are applied to the case of small drops in atmospheric clouds to test the importance of turbulence in initiating rainfall. Estimates of e are made for typical conditions and these are used to calculate the initial rates of collision, the change in mean properties and the rate of production of large drops. It is concluded that the effects of turbulence in clouds of the layer type should be small, but that moderate amounts of turbulence in cumulus clouds could be effective in broadening the drop size distribution in nearly uniform clouds where only the spatial variations of velocity are important. In heterogeneous clouds the collision rates are increased, and the effects due to the inertia of the drop soon become predominant. The effect of turbulence in causing collisions between unequal drops becomes comparable with that of gravity when e is about 2000 cm^2 sec^(−3).

1,304 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown experimentally that when the bubbles are produced in the manner described in this paper, only the zig-zag motion occurs when the radius of the bubble is less than about 1 mm, but bubbles of larger radius either zigzag or spiral depending upon various factors.
Abstract: This paper is concerned with the motion in water of air bubbles whose equivalent spherical radii are in the range 0.5-4.0 mm. These bubbles are not spherical but are, approximately, oblate spheroids; and they may rise steadily in a vertical straight line, or along a zig-zag path, or in a uniform spiral. The rectilinear motion occurs when the radius is less than about 0.7 mm, and the other motions occur for larger bubbles. There is disagreement in the literature as to whether it is the zig-zag or the spiral motion that occurs. It was found experimentally that, when the bubbles are produced in the manner described in this paper, only the zig-zag motion occurs when the radius of the bubble is less than about 1 mm, but bubbles of larger radius either zig-zag or spiral depending upon various factors. The spiralling bubble is treated theoretically by assuming that the flow near the front of the bubble is inviscid (the Reynolds number of the motion is several hundred) and considering the distribution of pressure over the front surface. Equations are obtained relating the geometrical parameters of the spiral, the shape of the bubble and the velocity of rise. The analysis is simplified by assuming that the pitch of the spiral is large compared with its radius, and the velocity of rise and shape of the bubble are determined as functions of the radius. The experimental and theoretical values are compared, and fair agreement found. Reasons to account for the disagreement are proposed. A modification of the theory is proposed to take account of the presence of impurities or surface-active substances in the water, and the velocities of rise thus predicted are in agreement with the experimental observations. The zig-zag motion is treated in a similar way, and the analysis leads to an equation which determines the stability of the rectilinear motion. The value of the Weber number at which the rectilinear motion. The value of the Weber number at which the rectilinear motion becomes unstable is deduced, and is found to be in fair agreement with experiment. The experimental evidence on the wake behind solid bodies is described briefly, and reasons are given for suggesting that the zig-zag motion is due to an interaction between the instability of the rectilinear motion and a periodic oscillation of the wake.

219 citations


Journal ArticleDOI
TL;DR: In this paper, it is shown that the effect of the inertia of the liquid is to alter slowly the orbit of the particle in accordance with Jeffery's hypothesis that the particle ultimately moves in such a way that the dissipation of energy is a minimum, but that this effect is orders of magnitude too small to account for any of the experimental observations.
Abstract: Small spheroidal particles suspended in a sheared viscous liquid are sometimes observed to take up slowly preferred orientations, relative to the motion of the undisturbed liquid, which are independent of the initial conditions of release. These obsevations cannot be accounted for by the solution, obtained by Jeffery (1922), of the linearized Navier-Stokes equations. It is shown in this paper that the effect of the inertia of the liquid is to alter slowly the orbit of the particle in accordance with Jeffery's hypothesis that the particle ultimately moves in such a way that the dissipation of energy is a minimum, but that this effect is orders of magnitude too small to account for any of the experimental observations. It is suggested that non-Newtonian properties of the liquid account for the observations. It is shown that the rate of orientation of a particle would then be independent of its size, and this prediction is verified experimentally. Other experimental evidence in support of this suggestion is also described. Some remarks are also made about the possible effect of collisions between the particles when more than one particle is present.

153 citations