scispace - formally typeset
P

Piotr Indyk

Researcher at Massachusetts Institute of Technology

Publications -  319
Citations -  38175

Piotr Indyk is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Nearest neighbor search & Approximation algorithm. The author has an hindex of 81, co-authored 306 publications receiving 35517 citations. Previous affiliations of Piotr Indyk include Rice University & IBM.

Papers
More filters
Proceedings ArticleDOI

Approximate nearest neighbors: towards removing the curse of dimensionality

TL;DR: In this paper, the authors present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces, for data sets of size n living in R d, which require space that is only polynomial in n and d.
Proceedings Article

Similarity Search in High Dimensions via Hashing

TL;DR: Experimental results indicate that the novel scheme for approximate similarity search based on hashing scales well even for a relatively large number of dimensions, and provides experimental evidence that the method gives improvement in running time over other methods for searching in highdimensional spaces based on hierarchical tree decomposition.
Proceedings ArticleDOI

Locality-sensitive hashing scheme based on p-stable distributions

TL;DR: A novel Locality-Sensitive Hashing scheme for the Approximate Nearest Neighbor Problem under lp norm, based on p-stable distributions that improves the running time of the earlier algorithm and yields the first known provably efficient approximate NN algorithm for the case p<1.
Journal ArticleDOI

Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions

TL;DR: An algorithm for the c-approximate nearest neighbor problem in a d-dimensional Euclidean space, achieving query time of O(dn 1c2/+o(1)) and space O(DN + n1+1c2 + o(1) + 1/c2), which almost matches the lower bound for hashing-based algorithm recently obtained.
Proceedings ArticleDOI

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions

TL;DR: An algorithm for the c-approximate nearest neighbor problem in a d-dimensional Euclidean space, achieving query time of O and space O almost matches the lower bound for hashing-based algorithm recently obtained in [27].