scispace - formally typeset
Open AccessProceedings Article

Similarity Search in High Dimensions via Hashing

TLDR
Experimental results indicate that the novel scheme for approximate similarity search based on hashing scales well even for a relatively large number of dimensions, and provides experimental evidence that the method gives improvement in running time over other methods for searching in highdimensional spaces based on hierarchical tree decomposition.
Abstract
The nearestor near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image databases, document collections, time-series databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality." That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in k-d trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than brute-force linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points Supported by NAVY N00014-96-1-1221 grant and NSF Grant IIS-9811904. Supported by Stanford Graduate Fellowship and NSF NYI Award CCR-9357849. Supported by ARO MURI Grant DAAH04-96-1-0007, NSF Grant IIS-9811904, and NSF Young Investigator Award CCR9357849, with matching funds from IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and Xerox Corporation. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment. Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999. from the database so as to ensure that the probability of collision is much higher for objects that are close to each other than for those that are far apart. We provide experimental evidence that our method gives signi cant improvement in running time over other methods for searching in highdimensional spaces based on hierarchical tree decomposition. Experimental results also indicate that our scheme scales well even for a relatively large number of dimensions (more than 50).

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

ORB: An efficient alternative to SIFT or SURF

TL;DR: This paper proposes a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise, and demonstrates through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations.
Proceedings ArticleDOI

Approximate nearest neighbors: towards removing the curse of dimensionality

TL;DR: In this paper, the authors present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces, for data sets of size n living in R d, which require space that is only polynomial in n and d.
Book

Computer Vision: Algorithms and Applications

TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Book ChapterDOI

BRIEF: binary robust independent elementary features

TL;DR: This work proposes to use binary strings as an efficient feature point descriptor, which is called BRIEF, and shows that it is highly discriminative even when using relatively few bits and can be computed using simple intensity difference tests.
Proceedings ArticleDOI

Locality-sensitive hashing scheme based on p-stable distributions

TL;DR: A novel Locality-Sensitive Hashing scheme for the Approximate Nearest Neighbor Problem under lp norm, based on p-stable distributions that improves the running time of the earlier algorithm and yields the first known provably efficient approximate NN algorithm for the case p<1.
References
More filters
Book

Pattern classification and scene analysis

TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.
Journal ArticleDOI

Indexing by Latent Semantic Analysis

TL;DR: A new method for automatic indexing and retrieval to take advantage of implicit higher-order structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries.
Journal ArticleDOI

Nearest neighbor pattern classification

TL;DR: The nearest neighbor decision rule assigns to an unclassified sample point the classification of the nearest of a set of previously classified points, so it may be said that half the classification information in an infinite sample set is contained in the nearest neighbor.
Book

Introduction to Modern Information Retrieval

TL;DR: Reading is a need and a hobby at once and this condition is the on that will make you feel that you must read.
Related Papers (5)