scispace - formally typeset
Search or ask a question
Author

Rajarshi Roy

Bio: Rajarshi Roy is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Laser & Chaotic. The author has an hindex of 54, co-authored 198 publications receiving 11814 citations. Previous affiliations of Rajarshi Roy include University of Rochester & National Institute of Standards and Technology.


Papers
More filters
Journal ArticleDOI
20 Feb 1998-Science
TL;DR: The experimental demonstration of chaotic communication with an optical system is described, using an erbium-doped fiber ring laser to produce chaotic light and embedded in the larger chaotic carrier and transmitted to a receiver system where the message was recovered from the chaos.
Abstract: Recent experiments with chaotic electronic circuits have shown the possibility of communication with chaos The experimental demonstration of chaotic communication with an optical system is described An erbium-doped fiber ring laser (EDFRL) was used to produce chaotic light with a wavelength of 153 micrometers A small 10-megahertz message was embedded in the larger chaotic carrier and transmitted to a receiver system where the message was recovered from the chaos Chaotic optical waveforms can thus be used to communicate masked information at high bandwidths

756 citations

Journal ArticleDOI
TL;DR: The first observation of stochastic resonance in an optical device, the bidirectional ring laser, is reported and the addition of injected noise can lead to an improved signal-to-noise ratio.
Abstract: We report the first observation of stochastic resonance in an optical device, the bidirectional ring laser. The experiment exploits a new technique to modulate periodically the asymmetry between the two counter-rotating lasing modes. The measurements verify that the addition of injected noise can lead to an improved signal-to-noise ratio (relative to that observed with no externally injected noise).

682 citations

Journal ArticleDOI
TL;DR: In this paper, experimental realization of a coupled-map lattice reveals dynamical states displaying coexisting spatial domains of coherence and incoherence, and phase-locking behavior can, in theory, coexist with incoherent dynamics.
Abstract: In systems of oscillators, phase-locking behaviour can, in theory, coexist with incoherent dynamics—invoking the fabled chimera state. Now, experimental realization of a coupled-map lattice reveals dynamical states displaying coexisting spatial domains of coherence and incoherence.

530 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that cortical networks that generate neuronal avalanches benefit from a maximized dynamic range, i.e., the ability to respond to the greatest range of stimuli.
Abstract: Spontaneous neuronal activity is a ubiquitous feature of cortex. Its spatiotemporal organization reflects past input and modulates future network output. Here we study whether a particular type of spontaneous activity is generated by a network that is optimized for input processing. Neuronal avalanches are a type of spontaneous activity observed in superficial cortical layers in vitro and in vivo with statistical properties expected from a network operating at “criticality.” Theory predicts that criticality and, therefore, neuronal avalanches are optimal for input processing, but until now, this has not been tested in experiments. Here, we use cortex slice cultures grown on planar microelectrode arrays to demonstrate that cortical networks that generate neuronal avalanches benefit from a maximized dynamic range, i.e., the ability to respond to the greatest range of stimuli. By changing the ratio of excitation and inhibition in the cultures, we derive a network tuning curve for stimulus processing as a function of distance from criticality in agreement with predictions from our simulations. Our findings suggest that in the cortex, (1) balanced excitation and inhibition establishes criticality, which maximizes the range of inputs that can be processed, and (2) spontaneous activity and input processing are unified in the context of critical phenomena.

527 citations

Journal ArticleDOI
TL;DR: A new framework and techniques are presented and techniques for the analysis of network dynamics that shows the connection between network symmetries and cluster formation are developed that could guide the design of new power grid systems or lead to new understanding of the dynamical behaviour of networks ranging from neural to social.
Abstract: Synchronization is of central importance in power distribution, telecommunication, neuronal and biological networks. Many networks are observed to produce patterns of synchronized clusters, but it has been difficult to predict these clusters or understand the conditions under which they form. Here we present a new framework and develop techniques for the analysis of network dynamics that shows the connection between network symmetries and cluster formation. The connection between symmetries and cluster synchronization is experimentally confirmed in the context of real networks with heterogeneities and noise using an electro-optic network. We experimentally observe and theoretically predict a surprising phenomenon in which some clusters lose synchrony without disturbing the others. Our analysis shows that such behaviour will occur in a wide variety of networks and node dynamics. The results could guide the design of new power grid systems or lead to new understanding of the dynamical behaviour of networks ranging from neural to social.

505 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: This work aims to understand how an enormous network of interacting dynamical systems — be they neurons, power stations or lasers — will behave collectively, given their individual dynamics and coupling architecture.
Abstract: The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

7,665 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations