scispace - formally typeset
Search or ask a question

Showing papers by "Robert J. Yokelson published in 2022"


DOI
30 Dec 2022
TL;DR: The recent FIREX-AQ experiment as mentioned in this paper was a multi-agency, interdisciplinary research effort to obtain detailed measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites and ground-based instruments, making extensive suborbital remote sensing measurements of fire dynamics, assessing local, regional and global modeling of fires, and strengthening connections to observables on the ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power.
Abstract: The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) experiment was a multi‐agency, inter‐disciplinary research effort to: (a) obtain detailed measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites and ground‐based instruments, (b) make extensive suborbital remote sensing measurements of fire dynamics, (c) assess local, regional, and global modeling of fires, and (d) strengthen connections to observables on the ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power. From Boise, ID western wildfires were studied with the NASA DC‐8 and two NOAA Twin Otter aircraft. The high‐altitude NASA ER‐2 was deployed from Palmdale, CA to observe some of these fires in conjunction with satellite overpasses and the other aircraft. Further research was conducted on three mobile laboratories and ground sites, and 17 different modeling forecast and analyses products for fire, fuels and air quality and climate implications. From Salina, KS the DC‐8 investigated 87 smaller fires in the Southeast with remote and in‐situ data collection. Sampling by all platforms was designed to measure emissions of trace gases and aerosols with multiple transects to capture the chemical transformation of these emissions and perform remote sensing observations of fire and smoke plumes under day and night conditions. The emissions were linked to fuels consumed and fire radiative power using orbital and suborbital remote sensing observations collected during overflights of the fires and smoke plumes and ground sampling of fuels.

12 citations


DOI
10 Jan 2022
TL;DR: In this paper , the authors measured BB aerosol samples using transmission electron microscopy (TEM) and ion chromatography during the Fire Influence on Regional to Global Environments and Air Quality (FIREX•AQ) campaign.
Abstract: Biomass burning (BB) events are occurring globally with increasing frequency, and their emissions are having more impacts on human health and climate. Large ash particles are recognized as a BB product with major influences on soil and water environments. However, fine‐ash particles, which have diameters smaller than several microns and characteristic morphologies and compositions (mainly Ca and Mg carbonates), have not yet been explicitly considered as a major BB aerosol component either in field observations or climate models. This study measured BB aerosol samples using transmission electron microscopy (TEM) and ion chromatography during the Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) campaign. We show that significant amounts of fine ash‐bearing particles are transported >100 km from their fire sources. Our environmental chamber experiments suggest that they can act as cloud condensation and ice nuclei. We also found considerable amounts of fine ash‐bearing particles in the TEM samples collected during previous campaigns (Biomass Burning Observation Project and Megacity Initiative: Local and Global Research Observations). These ash particles are commonly mixed with organic matter and make up ∼8% and 5% of BB smoke by number and mass, respectively, in samples collected during the FIREX‐AQ campaign. The measured ash‐mass concentrations are approximately five times and six times greater than those of BB black carbon and potassium, respectively, scaling to an estimated global emission of 11.6 Tg yr−1 with a range of 8.8–16.3 Tg yr−1. Better characterization and constraints on these fine ash‐bearing particles will improve BB aerosol measurements and strengthen assessments of BB impacts on human health and climate.

8 citations


Journal ArticleDOI
TL;DR: The Kathmandu valley in Nepal suffers from unhealthy air quality, with mean pre-monsoon submicron particulate matter concentration (PM1) of 40 µg m-3 and daily peaks over 75 µgm-3 as discussed by the authors .
Abstract: The Kathmandu Valley in Nepal suffers from unhealthy air quality, with mean pre-monsoon submicron particulate matter concentration (PM1) of 40 µg m-3 and daily peaks over 75 µg m-3. A...

4 citations


Journal ArticleDOI
TL;DR: In this paper , the authors used Fourier transform infrared spectroscopy (FTIR), whole air sampling (WAS), photoacoustic extinctiometers (PAX), and detailed off-line analyses of particulate matter (PM) collected on filters.
Abstract: Abstract. Peat fires in Southeast Asia are a major source of trace gases and particles to the regional-global atmosphere that influence atmospheric chemistry, climate, and air quality. During the November 2015 record-high Ocean Niño Index (ONI, 2.6) our mobile smoke sampling team made the first, or rare, field measurements of numerous trace gases, aerosol optical properties, and aerosol chemistry and mass emissions for fires burning only peat in the Indonesian province of Central Kalimantan (on the island of Borneo). The measurements used Fourier transform infrared spectroscopy (FTIR), whole air sampling (WAS), photoacoustic extinctiometers (PAX, 401 and 870 nm), and detailed off-line analyses of particulate matter (PM) collected on filters. In September–November 2019 we measured peat fire trace gas emissions again, using WAS only, under El Niño–Southern Oscillation (ENSO)-neutral conditions (ONI, 0.3) in more remote areas of Central Kalimantan and also the Indonesian provinces of Riau, Jambi, and South Sumatra, all on the island of Sumatra. The 2019 measurements significantly expanded the geographic range and climate conditions sampled. This paper presents the 2019 results and synthesizes them with the previous fieldwork to converge on more robust regional average emission factors (EFs; grams of compound per kilogram of biomass burned) for authentic peat fires. In addition, samples of peat imported from Indonesia were burned in US laboratories, and the EFs and optical properties were characterized in more detail than in the field by a larger suite of instrumentation. We use the improved knowledge of regional emissions based on the expanded field measurements to select the most representative lab data and compute a synthesized, more “chemically complete” set of EFs and aerosol optical properties for tropical peat fires. The modified combustion efficiency (MCE) values for the peat smoke sampled in 2019 were within the range of MCEs sampled in 2015, but with a lower average in 2019 (0.718±0.021, range 0.687–0.736) than 2015 (0.772±0.035, range 0.693–0.835). Averaging the new and older data together suggests an updated MCE for tropical peat fires of ∼0.76. Despite the difference in MCE, the study-average methane emission factors (EF CH4) were remarkably similar across the 2 years probing different regions: 9.42±2.51 g kg−1 in 2019 and 9.51±4.74 g kg−1 in 2015. When parsing the 2019 samples by province, the EFs for non-methane organic gases (NMOGs) were about 3 times higher in South Sumatra and Central Kalimantan than in Jambi and Riau, but the overall 2019 study average was only ∼15 % higher than the 2015 study average. South Sumatra peat fires emitted higher amounts of carbonyl and dimethyl sulfide, suggesting a volcanic or marine influence or effects of agricultural chemicals. The lab and fieldwork taken together provide EFs for 230 trace gases including CO2 (1544 g kg−1), CO (315 g kg−1), and CH4 (9.8 g kg−1). These are significant adjustments to IPCC-recommended EFs, −9 %, +50 %, and −53 %, respectively. We also report EFs for numerous NMOGs, 46 N-containing compounds, and 14 sulfur- or halogen-containing species. The use of high-resolution mass spectrometry in the lab allowed measurement of 82 % more NMOG mass than in the field. Gravimetrically measured EF PM2.5 in the field in 2015 (17.3±5.8 g kg−1) was ∼20 % lower than the average from lab studies (22.4±10.4 g kg−1), perhaps due to higher field temperatures. Taken together the lab and field data show that the single-scattering albedo (SSA) was largely independent of wavelength and MCE in the visible (∼0.998), but lower at low MCE at 401 and 405 nm with a value of 0.958 at the study-average MCE. The absorption Ångström exponent (AAE) at the average MCE was 5.7. By far the largest PM component was weakly absorbing insoluble organic carbon.

3 citations


Journal ArticleDOI
TL;DR: In this article , the authors used aircraft data from the FIREX-AQ campaign to evaluate differences in evolving aerosol size distributions, OA, and oxygen to carbon ratios (O:C) between and within smoke plumes during the first several hours of aging as a function of smoke concentrations.
Abstract: Abstract. The evolution of organic aerosol (OA) and aerosol size distributions within smoke plumes is uncertain due to the variability in rates of coagulation and OA condensation/evaporation between different smoke plumes and at different locations within a single plume. We use aircraft data from the FIREX-AQ campaign to evaluate differences in evolving aerosol size distributions, OA, and oxygen to carbon ratios (O:C) between and within smoke plumes during the first several hours of aging as a function of smoke concentration. The observations show that the median particle diameter increases faster in smoke of a higher initial OA concentration (>1000 µg m−3), with diameter growth of over 100 nm in 8 h – despite generally having a net decrease in OA enhancement ratios – than smoke of a lower initial OA concentration (<100 µg m−3), which had net increases in OA. Observations of OA and O:C suggest that evaporation and/or secondary OA formation was greater in less concentrated smoke prior to the first measurement (5–57 min after emission). We simulate the size changes due to coagulation and dilution and adjust for OA condensation/evaporation based on the observed changes in OA. We found that coagulation explains the majority of the diameter growth, with OA evaporation/condensation having a relatively minor impact. We found that mixing between the core and edges of the plume generally occurred on timescales of hours, slow enough to maintain differences in aging between core and edge but too fast to ignore the role of mixing for most of our cases.

3 citations


Journal ArticleDOI
01 Jan 2023
TL;DR: In this article , the relative importance of reactive organic gases as an oxidant sink is constrained, resulting in poor performance as a source of oxidant sinks for wildfire smoke, and the importance of these gases is discussed.
Abstract: Wildfire smoke contains numerous different reactive organic gases, many of which have only recently been identified and quantified. Consequently, their relative importance as an oxidant sink is poorly constrained, resulting...

2 citations


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the concentration, chemical composition, and sources of fine and coarse particulate matter (PM2.5, PM10, and PM10-2.4) at three sites within or near the Kathmandu Valley during the winter of 2018 as part of the second Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE 2).
Abstract: The Kathmandu Valley in Nepal experiences poor air quality, especially in the dry winter season. In this study, we investigated the concentration, chemical composition, and sources of fine and coarse particulate matter (PM2.5, PM10, and PM10–2.5) at three sites within or near the Kathmandu Valley during the winter of 2018 as part of the second Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE 2). Daily PM2.5 concentrations were very high throughout the study period, ranging 72–149 μg m–3 at the urban Ratnapark site in Kathmandu, 88–161 μg m–3 at the suburban Lalitpur site, and 40–74 μg m–3 at rural Dhulikhel on the eastern rim of the Kathmandu Valley. Meanwhile, PM10 ranged 194–309, 174–377, and 64–131 μg m–3, respectively. At the Ratnapark site, crustal materials from resuspended soil contributed an average of 11% of PM2.5 and 34% of PM10. PM2.5 was largely comprised of organic carbon (OC, 28–30% by mass) and elemental carbon (EC, 10–14% by mass). As determined by chemical mass balance source apportionment modeling, major PM2.5 OC sources were garbage burning (15–21%), biomass burning (10–17%), and fossil fuel (14–26%). Secondary organic aerosol (SOA) contributions from aromatic volatile organic compounds (13–23% OC) were larger than those from isoprene (0.3–0.5%), monoterpenes (0.9–1.4%), and sesquiterpenes (3.6–4.4%). Nitro-monoaromatic compounds—of interest due to their light-absorbing properties and toxicity—indicate the presence of biomass burning-derived SOA. Knowledge of primary and secondary PM sources can facilitate air quality management in this region.

2 citations


Journal ArticleDOI
TL;DR: In this paper , the first aerosol mass spectral profiles of dung burning, charcoal burning, garbage burning, and brick kilns are provided, and a framework for the identification of emission sources using the unit mass resolution organic mass fractions atm/z 55 (f55), m/z 57 (f57), and m/Z 60 (f60) is proposed.
Abstract: Unit mass resolution mass spectral profiles of nonrefractory submicron aerosol were retrieved from undersampled atmospheric emission sources common to South Asia using a “mini” aerosol mass spectrometer. Emission sources including wood- and dung-fueled cookstoves, agricultural residue burning, garbage burning, engine exhaust, and coal-fired brick kilns were sampled during the 2015 Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign. High-resolution peak fitting estimates of the mass spectra were used to characterize ions found within each source profile and help identify mass spectral signatures unique to aerosol emissions from the investigated source types. The first aerosol mass spectral profiles of dung burning, charcoal burning, garbage burning, and brick kilns are provided in this work. The online aerosol mass spectra show that organics were generally the dominant component of the nonrefractory aerosol. However, inorganic aerosol components including ammonium and chloride were significant in dung- and charcoal-fired cookstove emissions and sulfate compounds were major components of the coal-fired brick kiln emissions. Organic mass spectra from both the charcoal burning and zigzag brick kiln were dominated by nitrogen-containing ions thought to be from the electron ionization of amines and amides contained in the emissions. The mixed garbage burning emissions profiles were dominated by plastic combustion with very low fractions of organic markers associated with biomass burning. The plastic burning emissions were associated with enhanced organic signal at mass-to-charge (m/z) 104 and m/z 166, which could be useful fragment ion indicators for garbage burning in ambient aerosol profiles. Finally, a framework for the identification of emission sources using the unit mass resolution organic mass fractions at m/z 55 (f55), m/z 57 (f57), and m/z 60 (f60) is proposed in this work. Plotting the ratio of f55 to f57 versus f60 is found to be effective for the identification of emissions by the fuel type and even useful in separating emissions of similar source types. Although the sample size was limited, these results give further context to the aerosol and gas-phase emission factors presented in other NAMaSTE works and provide a critical reference for future aerosol composition measurements in South Asia.

1 citations


Journal ArticleDOI
TL;DR: In this article , the authors present ambient nonrefractory PM1 chemical composition, and concentration measured by a mini aerosol mass spectrometer (mAMS) sequentially at Dhulikhel (on the valley exterior), then urban Ratnapark, and finally suburban Lalitpur in winter 2018.
Abstract: The Kathmandu valley experiences an average wintertime PM1 concentration of ∼100 μg m–3 and daily peaks over 200 μg m–3. We present ambient nonrefractory PM1 chemical composition, and concentration measured by a mini aerosol mass spectrometer (mAMS) sequentially at Dhulikhel (on the valley exterior), then urban Ratnapark, and finally suburban Lalitpur in winter 2018. At all sites, organic aerosol (OA) was the largest contributor to combined PM1 (C-PM1) (49%) and black carbon (BC) was the second largest contributor (21%). The average background C-PM1 at Dhulikhel was 48 μg m–3; the urban enhancement was 120% (58 μg m–3). BC had an average of 6.1 μg m–3 at Dhulikhel, an urban enhancement of 17.4 μg m–3. Sulfate (SO4) was 3.6 μg m–3 at Dhulikhel, then 7.5 μg m–3 at Ratnapark, and 12.0 μg m–3 at Lalitpur in the brick kiln region. Chloride (Chl) increased by 330 and 250% from Dhulikhel to Ratnapark and Lalitpur on average. Positive matrix factorization (PMF) identified seven OA sources, four primary OA sources, hydrocarbon-like (HOA), biomass burning (BBOA), trash burning (TBOA), a sulfate-containing local OA source (sLOA), and three secondary oxygenated organic aerosols (OOA). OOA was the largest fraction of OA, over 50% outside the valley and 36% within. HOA (traffic) was the most prominent primary source, contributing 21% of all OA and 44% of BC. Brick kilns were the second largest contributor to C-PM1, 12% of OA, 33% of BC, and a primary emitter of aerosol sulfate. These results, though successive, indicate the importance of multisite measurements to understand ambient particulate matter concentration heterogeneity across urban regions.

1 citations


Journal ArticleDOI
TL;DR: In this article , the authors provide a rare set of CFC-11 measurements from understudied countries and sources throughout Asia (1998-2018), including China, Nepal, Pakistan, Saudi Arabia and South Korea.
Abstract: Environmental context The production and consumption of chlorofluorocarbons (CFCs) is regulated under the Montreal Protocol and its amendments, due to their role in stratospheric ozone depletion. Global atmospheric levels of CFC-11 did not decline as rapidly as expected during 2012–2018, in large part due to emissions from eastern China. In order to further clarify global CFC-11 emissions, this work provides a rare set CFC-11 measurements from understudied countries and sources throughout Asia (1998–2018). Abstract Trichlorofluoromethane (CFC-11) is an ozone-depleting substance whose production and consumption are regulated under the Montreal Protocol. Global atmospheric CFC-11 levels declined less quickly than expected during 2012–2018, largely because of ongoing emissions from eastern Asia. Satellite measurements suggest additional CFC-11 hotspots in the Arabian Peninsula and north India/Nepal. Here we present CFC-11 levels measured in dozens of Asian cities during 1998–2018, including China and Pakistan before the 2010 phaseout of CFC-11, and China, Nepal, Pakistan, Saudi Arabia and South Korea after the phaseout. Surface measurements of CFCs in Nepal, Pakistan and Saudi Arabia are very rare, and these surveys provide important observational constraints from understudied regions. During pre-phaseout campaigns, higher CFC-11 levels were measured in Beijing than Karachi, despite much higher overall volatile organic compound (VOC) levels in Karachi. During post-phaseout campaigns, average CFC-11 levels were higher in inland Shandong Province and Seoul (1.11–1.23× background) than in western Saudi Arabia, Lahore and Kathmandu (1.02–1.11× background), despite higher levels of other VOCs in the latter regions. While China is known to emit excess CFC-11, elevated CFC-11 levels in Seoul, especially during stagnant meteorological conditions, suggest local emissions in 2015–2016. Rough emission estimates suggest that South Korea is likely a relatively minor global source of excess CFC-11. Hotspot CFC-11 levels were measured from a landfill fire in Mecca (average of 1.8× background) and from garbage burning in Nepal (1.5× background). Because garbage burning and open burning in dumps are common practices, further investigation of CFC-11 emissions at dumps and landfills worldwide is encouraged to determine their global impact.