scispace - formally typeset
Search or ask a question

Showing papers by "Roger Penrose published in 2020"


Journal ArticleDOI
TL;DR: In this paper, the authors present strong observational evidence of numerous previously unobserved anomalous circular spots, of significantly raised temperature, in the CMB sky, having angular radii between 0.03 and 0.04 radians.
Abstract: This paper presents strong observational evidence of numerous previously unobserved anomalous circular spots, of significantly raised temperature, in the CMB sky. The spots have angular radii between 0.03 and 0.04 radians (i.e. angular diameters between about 3 and 4 degrees). There is a clear cut-off at that size, indicating that each anomalous spot would have originated from a highly energetic point-like source, located at the end of inflation -- or else point-like at the conformally expanded Big Bang, if it is considered that there was no inflationary phase. The significant presence of these anomalous spots, was initially noticed in the Planck 70 GHz satellite data by comparison with 1000 standard simulations, and then confirmed by extending the comparison to 10000 simulations. Such anomalous points were then found at precisely the same locations in the WMAP data, their significance confirmed by comparison with 1000 WMAP simulations. Planck and WMAP have very different noise properties and it seems exceedingly unlikely that the observed presence of anomalous points in the same directions on both maps may come entirely from the noise. Subsequently, further confirmation was found in the Planck data by comparison with 1000 FFP8.1 MC simulations (with $l \leq 1500$). The existence of such anomalous regions, resulting from point-like sources at the conformally stretched-out big bang, is a predicted consequence of conformal cyclic cosmology (CCC), these sources being the Hawking points of the theory, resulting from the Hawking radiation from supermassive black holes in a cosmic aeon prior to our own.

16 citations


Journal ArticleDOI
TL;DR: Stephen Hawking's contributions to the understanding of gravity, black holes and cosmology were truly immense as discussed by the authors, and they began with the singularity theorems in the 1960s followed by his discovery that black holes have an entropy and consequently a finite temperature.
Abstract: Stephen Hawking's contributions to the understanding of gravity, black holes and cosmology were truly immense. They began with the singularity theorems in the 1960s followed by his discovery that black holes have an entropy and consequently a finite temperature. Black holes were predicted to emit thermal radiation, what is now called Hawking radiation. He pioneered the study of primordial black holes and their potential role in cosmology. His organisation of and contributions to the Nuffield Workshop in 1982 consolidated the picture that the large-scale structure of the universe originated as quantum fluctuations during the inflationary era. Work on the interplay between quantum mechanics and general relativity resulted in his formulation of the concept of the wavefunction of the universe. The tension between quantum mechanics and general relativity led to his struggles with the information paradox concerning deep connections between these fundamental areas of physics. These achievements were all accomplished following the diagnosis during the early years of Stephen's studies as a post-graduate student in Cambridge that he had incurable motor neuron disease -- he was given two years to live. Against all the odds, he lived a further 55 years. The distinction of his work led to many honours and he became a major public figure, promoting with passion the needs of disabled people. His popular best-selling book A Brief History of Time made cosmology and his own work known to the general public worldwide. He became an icon for science and an inspiration to all.

5 citations


Posted Content
TL;DR: In this article, a general procedure based on Gerstenhaber-Schack complexes is described for extending the Donaldson-Friedman gluing of twistor spaces via deformation theory of singular spaces.
Abstract: We describe a general procedure, based on Gerstenhaber-Schack complexes, for extending to quantized twistor spaces the Donaldson-Friedman gluing of twistor spaces via deformation theory of singular spaces. We consider in particular various possible quantizations of twistor spaces that leave the underlying spacetime manifold classical, including the geometric quantization of twistor spaces originally constructed by the second author, as well as some variants based on noncommutative geometry. We discuss specific aspects of the gluing construction for these different quantization procedures.

4 citations