scispace - formally typeset
Search or ask a question
Author

Roland Siegwart

Other affiliations: École Polytechnique, University of Patras, University of Tehran  ...read more
Bio: Roland Siegwart is an academic researcher from Institute of Robotics and Intelligent Systems. The author has contributed to research in topics: Robot & Mobile robot. The author has an hindex of 105, co-authored 1154 publications receiving 51473 citations. Previous affiliations of Roland Siegwart include École Polytechnique & University of Patras.


Papers
More filters
Proceedings ArticleDOI
06 Nov 2011
TL;DR: A comprehensive evaluation on benchmark datasets reveals BRISK's adaptive, high quality performance as in state-of-the-art algorithms, albeit at a dramatically lower computational cost (an order of magnitude faster than SURF in cases).
Abstract: Effective and efficient generation of keypoints from an image is a well-studied problem in the literature and forms the basis of numerous Computer Vision applications. Established leaders in the field are the SIFT and SURF algorithms which exhibit great performance under a variety of image transformations, with SURF in particular considered as the most computationally efficient amongst the high-performance methods to date. In this paper we propose BRISK1, a novel method for keypoint detection, description and matching. A comprehensive evaluation on benchmark datasets reveals BRISK's adaptive, high quality performance as in state-of-the-art algorithms, albeit at a dramatically lower computational cost (an order of magnitude faster than SURF in cases). The key to speed lies in the application of a novel scale-space FAST-based detector in combination with the assembly of a bit-string descriptor from intensity comparisons retrieved by dedicated sampling of each keypoint neighborhood.

3,292 citations

Book
05 Mar 2004
TL;DR: Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners.
Abstract: Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques.] This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners.

2,414 citations

Journal ArticleDOI
TL;DR: This work forms a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms and compares the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter.
Abstract: Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual-inertial odometry or simultaneous localization and mapping SLAM. While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual-inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual-inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy.

1,472 citations

Journal ArticleDOI
TL;DR: Eleven datasets are provided, ranging from slow flights under good visual conditions to dynamic flights with motion blur and poor illumination, enabling researchers to thoroughly test and evaluate their algorithms.
Abstract: This paper presents visual-inertial datasets collected on-board a micro aerial vehicle. The datasets contain synchronized stereo images, IMU measurements and accurate ground truth. The first batch of datasets facilitates the design and evaluation of visual-inertial localization algorithms on real flight data. It was collected in an industrial environment and contains millimeter accurate position ground truth from a laser tracking system. The second batch of datasets is aimed at precise 3D environment reconstruction and was recorded in a room equipped with a motion capture system. The datasets contain 6D pose ground truth and a detailed 3D scan of the environment. Eleven datasets are provided in total, ranging from slow flights under good visual conditions to dynamic flights with motion blur and poor illumination, enabling researchers to thoroughly test and evaluate their algorithms. All datasets contain raw sensor measurements, spatio-temporally aligned sensor data and ground truth, extrinsic and intrinsic calibrations and datasets for custom calibrations.

1,361 citations

Proceedings ArticleDOI
28 Sep 2004
TL;DR: The results of two model-based control techniques applied to an autonomous four-rotor micro helicopter called quadrotor are presented, a classical approach (PID) assumed a simplified dynamics and a modern technique based on a more complete model.
Abstract: The development of miniature flying robots has become a reachable dream, thanks to the new sensing and actuating technologies. Micro VTOL systems represent a useful class of flying robots because of their strong abilities for small-area monitoring and building exploration. In this paper, we present the results of two model-based control techniques applied to an autonomous four-rotor micro helicopter called quadrotor. A classical approach (PID) assumed a simplified dynamics and a modern technique (LQ) based on a more complete model. Various simulations were performed and several tests on the bench validate the control laws. Finally, we present the results of the first test in flight with the helicopter released. These developments are part of the OS4 project in our lab.

1,264 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: The autonomous driving platform is used to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection, revealing that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world.
Abstract: Today, visual recognition systems are still rarely employed in robotics applications. Perhaps one of the main reasons for this is the lack of demanding benchmarks that mimic such scenarios. In this paper, we take advantage of our autonomous driving platform to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection. Our recording platform is equipped with four high resolution video cameras, a Velodyne laser scanner and a state-of-the-art localization system. Our benchmarks comprise 389 stereo and optical flow image pairs, stereo visual odometry sequences of 39.2 km length, and more than 200k 3D object annotations captured in cluttered scenarios (up to 15 cars and 30 pedestrians are visible per image). Results from state-of-the-art algorithms reveal that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world. Our goal is to reduce this bias by providing challenging benchmarks with novel difficulties to the computer vision community. Our benchmarks are available online at: www.cvlibs.net/datasets/kitti

11,283 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations