scispace - formally typeset
Search or ask a question

Showing papers by "Ruijin Huang published in 2003"


Journal ArticleDOI
TL;DR: It is postulated that the notochord and ventral neural tube influence hypaxial expression of Fgf-8 in the myotome and that, in turn, FgF-8 has a functional role in rib formation.

49 citations


Journal ArticleDOI
TL;DR: The results confirm that quail cell nuclei are incorporated into the myotubes of the limb muscles and indicates that superficial lymphatics develop independently from the deep ones and shows that cells migrating from the lateral somitic edge into the limb buds differentiate into three cell populations: myocytes, BECs and LECs.
Abstract: Cells from the ventrolateral dermomyotomal lips at limb levels undergo epithelio-mesenchymal transition and migrate as individual and undifferentiated cells into the limb buds. The cells give rise to myocytes and blood vascular endothelial cells (BECs) in the limb. Using vascular endothelial growth factor receptor-3 (VEGFR-3) as a marker, it has also been shown that the somites contribute to endothelial cells of lymphatic vessels in the limbs, but it is unknown where the lymphangiogenic precursors are located within the somite. In this study we used the transcription factor Prox1 as a lymphatic marker and investigated whether cells in the dorso-lateral quarter of the somite differentiate into lymphatic endothelial cells (LECs) of the limbs. To label the migrating cells, the dorso-lateral part of an epithelial brachial somite was grafted homotopically from quail into chick embryos at HH stages 13–14. The chick hosts were incubated until day 10–11 of development. The quail cell nuclei were identified with QCPN (anti-quail) antibodies. Cell differentiation was analysed by immunohistochemical staining with QH1, anti-desmin and anti-Prox1 antibodies, and by in situ hybridisation with Prox1 probes. Our results confirm that quail cell nuclei are incorporated into the myotubes of the limb muscles. Quail cells are found in the endothelium of limb blood vessels and lymphatics, predominantly the dermal lymphatics. This indicates that superficial lymphatics develop independently from the deep ones and shows that cells migrating from the lateral somitic edge into the limb buds differentiate into three cell populations: myocytes, BECs and LECs.

37 citations


Journal ArticleDOI
TL;DR: The results suggest that muscle and endothelial cells derived from the same somite migrate on different routes in the developing limb bud.
Abstract: Somites contribute myogenic and endothelial precursor cells to the limb bud. Transplantations of single somites have shown the pattern of muscle cell distribution from individual somites to individual limb muscles. However, the pattern of the endothelial cell distribution from individual somites to the limb has not been characterized. We have mapped quail muscle and endothelial cell distribution in the distal part of the chick limb after single somite transplantation to determine if there is a spatial relationship between muscle and endothelial cells originating from the same somite. Single brachial somites from quail donor embryos were transplanted into chick embryos, and, following incubation, serial sections were stained with a quail-endothelial cell-specific monoclonal antibody (QH-1), an anti-quail antibody (QCPN) and an anti-desmin antibody to distinguish the quail endothelial and muscle cells from chick cells. Our results show that transplants of somite 16-21 each gave rise to quail endothelial cells in the wing. The anterioposterior position of the blood vessels formed by somitic endothelial cells corresponded to the craniocaudal position of the somite from which they have originated. Endothelial cells were located not only in the peri- and endomysium but also in the subcutaneous, intermuscular, perineural and periost tissues. There was no strict correlation between the distribution of muscle and endothelial cell from a single transplanted somite. Blood vessels formed by grafted quail endothelial cells could invade the muscle that did not contain any quail muscle cells, and conversely a muscle composed of numerous quail muscle cells was lacking any endothelial cells of quail origin. Furthermore, a chimeric limb with very little quail muscle cells was found to contain numerous quail endothelial cells and vice versa. These results suggest that muscle and endothelial cells derived from the same somite migrate on different routes in the developing limb bud.

21 citations