scispace - formally typeset
Search or ask a question

Showing papers by "Ryan O. Milligan published in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors studied the variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years, and found that the Ly-alpha emission peaks around the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of nonthermal electrons) is greatest.
Abstract: Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting broadband Ly-alpha observations of solar flares. Comparisons have also been made with other broadband Ly-alpha photometers such as PROBA2 (Project for On-Board Autonomy-2) / LYRA (Lyman Alpha Radiometer) and GOES (Geostationary Operational Environmental Satellite) / EUVE (Extreme Ultraviolet Explorer).

26 citations


Journal ArticleDOI
TL;DR: The Max Millennium program and Major Flare Watch (MFW) alerts, aimed at coordinating observations of all flares ≥ X 1 GOES X-ray classification (including those partially occulted by the limb), are reviewed in this paper.
Abstract: The physical processes that trigger solar flares are not well understood, and significant debate remains around processes governing particle acceleration, energy partition, and particle and energy transport. Observations at high resolution in energy, time, and space are required in multiple energy ranges over the whole course of many flares to build an understanding of these processes. Obtaining high-quality, co-temporal data from ground- and space- based instruments is crucial to achieving this goal and was the primary motivation for starting the Max Millennium program and Major Flare Watch (MFW) alerts, aimed at coordinating observations of all flares ≥ X1 GOES X-ray classification (including those partially occulted by the limb). We present a review of the performance of MFWs from 1 February 2001 to 31 May 2010, inclusive, which finds that (1) 220 MFWs were issued in 3407 days considered (6.5 % duty cycle), with these occurring in 32 uninterrupted periods that typically last 2 – 8 days; (2) 56% of flares ≥ X1 were caught, occurring in 19 % of MFW days; (3) MFW periods ended at suitable times, but substantial gain could have been achieved in percentage of flares caught if periods had started 24 h earlier; (4) MFWs successfully forecast X-class flares with a true skill statistic (TSS) verification metric score of 0.500, that is comparable to a categorical flare/no-flare interpretation of the NOAA Space Weather Prediction Centre probabilistic forecasts (TSS = 0.488).

18 citations


Journal ArticleDOI
TL;DR: For the past six years, the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has been monitoring changes in the Sun's extreme ultraviolet output over a range of timescales.
Abstract: For the past six years, the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has been monitoring changes in the Sun's extreme ultraviolet output over a range of timescales. Its primary function is to provide measurements of the solar spectral irradiance that is responsible for driving fluctuations in Earth's ionosphere and thermosphere. However, despite its modest spectral resolution and lack of spatial information, the EVE spectral range contains many lines and continua that have become invaluable for diagnosing the response of the lower solar atmosphere itself to an injection of energy, particularly during a flare's impulsive phase. In addition, high temperature emission lines can also be used to track changes in temperature and density of flaring plasma in the corona. The high precision of EVE observations are therefore crucial in helping us understand particle acceleration and energy transport mechanisms during solar flares, as well as the origins of the Sun's most geoeffective emission.