scispace - formally typeset
Search or ask a question

Showing papers by "Ryuichiro Atarashi published in 2015"


Journal ArticleDOI
TL;DR: Transient expression of the phosphomimic form of p62, which has enhanced ubiquitin-binding activity, reduced the amount of PrPSc in prion-infected cells, indicating that the activation of p 62 could accelerate the clearance ofPrPSc.
Abstract: Prion diseases are neurodegenerative disorders characterized by the aggregation of abnormally folded prion protein (PrPSc). In this study, we focused on the mechanism of clearance of PrPSc, which remains unclear. p62 is a cytosolic protein known to mediate both the formation and degradation of aggregates of abnormal proteins. The levels of p62 protein increased in prion-infected brains and persistently infected cell cultures. Upon proteasome inhibition, p62 co-localized with PrPSc, forming a large aggregate in the perinuclear region, hereafter referred to as PrPSc-aggresome. These aggregates were surrounded with autophagosome marker LC3 and lysosomes in prion-infected cells. Moreover, transient expression of the phosphomimic form of p62, which has enhanced ubiquitin-binding activity, reduced the amount of PrPSc in prion-infected cells, indicating that the activation of p62 could accelerate the clearance of PrPSc. Our findings would thus suggest that p62 could be a target for the therapeutic control of prion diseases.

45 citations


Journal ArticleDOI
TL;DR: Results suggest that USP14 prevents degradation of both normal and abnormal PrP, a deubiqutinating enzyme that catalyzes trimming of polyubiquitin chains and plays a role in regulation of proteasomal processes.
Abstract: Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of prion protein (PrPC). To date, there is no effective treatment for the disease. The accumulated PrP, termed PrPSc, forms amyloid fibrils and could be infectious. It has been suggested that PrPSc is abnormally folded and resistant to proteolytic degradation, and also inhibits proteasomal functions in infected cells, thereby inducing neuronal death. Recent work indicates that the ubiquitin-proteasome system is involved in quality control of PrPC. To reveal the significance of prion protein ubiqitination, we focused on ubiquitin-specific protease 14 (USP14), a deubiqutinating enzyme that catalyzes trimming of polyubiquitin chains and plays a role in regulation of proteasomal processes. Results from the present study showed that treatment with a selective inhibitor of USP14 reduced PrPC, as well as PrPSc, levels in prion-infected neuronal cells. Overexpression of the dominant negative mutant form of USP14 reduced PrPSc, whereas wildtype USP14 increased PrPSc in prion-infected cells. These results suggest that USP14 prevents degradation of both normal and abnormal PrP. Collectively, a better understanding about the regulation of PrPSc clearance caused by USP14 might contribute greatly to the development of therapeutic strategies for prion diseases.

45 citations


Journal ArticleDOI
14 Sep 2015-PLOS ONE
TL;DR: The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK), derived from a patient with Gerstmann–Sträussler–Scheinker syndrome, was significantly increased in cultures treated with 3-methyladenine but substantially reduced in those treated with the macroautophagy inducer rapamycin, indicating that the degradation of PrpSc in host cells might be strain-dependent.
Abstract: Prion diseases are neurodegenerative disorders caused by the accumulation of abnormal prion protein (PrPSc) in the central nervous system. With the aim of elucidating the mechanism underlying the accumulation and degradation of PrPSc, we investigated the role of autophagy in its degradation, using cultured cells stably infected with distinct prion strains. The effects of pharmacological compounds that inhibit or stimulate the cellular signal transduction pathways that mediate autophagy during PrPSc degradation were evaluated. The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK), derived from a patient with Gerstmann–Straussler–Scheinker syndrome, was significantly increased in cultures treated with the macroautophagy inhibitor 3-methyladenine (3MA) but substantially reduced in those treated with the macroautophagy inducer rapamycin. The decrease in FK-derived PrPSc levels was mediated, at least in part, by the phosphatidylinositol 3-kinase/MEK signalling pathway. By contrast, neither rapamycin nor 3MA had any apparently effect on PrPSc from either the 22L or the Chandler strain, indicating that the degradation of PrPSc in host cells might be strain-dependent.

23 citations


Journal ArticleDOI
12 Jun 2015-PLOS ONE
TL;DR: In vitro PrP-amyloid amplification assay provides a new way to reduce the risk of iatrogenic prion transmission and quantitated the seeding activity of affected human brains.
Abstract: The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission.

15 citations


Journal ArticleDOI
18 Aug 2015-Prion
TL;DR: This study shows that at least some strain-specific conformational properties of the original PrPSc can be transmitted to rPrP-fibrils in vitro, but further conservation appears to require unknown cofactors or environmental conditions or both.
Abstract: A major unsolved issue of prion biology is the existence of multiple strains with distinct phenotypes and this strain phenomenon is postulated to be associated with the conformational diversity of the abnormal prion protein (PrP(Sc)). Real-time quaking-induced conversion (RT-QUIC) assay that uses Escherichia coli-derived recombinant prion protein (rPrP) for the sensitive detection of PrP(Sc) results in the formation of rPrP-fibrils seeded with various strains. We demonstrated that there are differences in the secondary structures, especially in the β-sheets, and conformational stability between 2 rPrP-fibrils seeded with either Chandler or 22L strains in the first round of RT-QUIC. In particular, the differences in conformational properties of these 2 rPrP-fibrils were common to those of the original PrP(Sc). However, the strain specificities of rPrP-fibrils seen in the first round were lost in subsequent rounds. Instead, our findings suggest that nonspecific fibrils became the major species, probable owing to their selective growth advantage in the RT-QUIC. This study shows that at least some strain-specific conformational properties of the original PrP(Sc) can be transmitted to rPrP-fibrils in vitro, but further conservation appears to require unknown cofactors or environmental conditions or both.

9 citations


Journal ArticleDOI
TL;DR: It is found that stable infection of prion suppressed IRF-3 gene-expression and Oct-1 protein was significantly reduced in prion-infected cells and mice brains compared with uninfected groups, concluding that prion infection could interfere in the function ofOct-1, resulting in the down-regulation of IRF -3.
Abstract: As a prompt response against invasion of various viruses, interferon regulatory factor-3 (IRF-3) is initially phosphorylated to become activated and upregulates mainly Type I Interferons (IFN-I) in most cell types. We previously reported that IRF-3-dependent host innate immune responses partially interfere in infection of prions. Here, we found that stable infection of prion suppressed IRF-3 gene-expression. The decreased promoter activity of IRF-3 was significantly restored along with treatment of anti-prion drugs in the prion-infected cells, suggesting that infection of prion directly influence the regulation of IRF-3 transcription. We further investigated promoter activity of 5′- flanking region of murine IRF-3 using a luciferase reporter system and found that the nucleotides -119 to -1 were indispensable for the promoter activity. Within this region, mutations in the Oct-1 binding site significantly reduced the promoter activity and chromatin immunoprecipitation (ChIP) assay revealed that Oct-1 indeed binds to the region. In addition, overexpression of Oct-1 increased the promoter activity of IRF-3. Intriguingly, Oct-1 protein was significantly reduced in prion-infected cells and mice brains compared with uninfected groups. Taken together, we concluded that prion infection could interfere in the function of Oct-1, resulting in the down-regulation of IRF-3.

4 citations