scispace - formally typeset
Search or ask a question

Showing papers by "S. Donzelli published in 2011"


Journal ArticleDOI
TL;DR: The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009 as discussed by the authors, and it will continue to gather scientific data until the end of its cryogenic lifetime.
Abstract: The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. We give an overview of the history of Planck in its first year of operations, and describe some of the key performance aspects of the satellite. This paper is part of a package submitted in conjunction with Planck's Early Release Compact Source Catalogue, the first data product based on Planck to be released publicly. The package describes the scientific performance of the Planck payload, and presents results on a variety of astrophysical topics related to the sources included in the Catalogue, as well as selected topics on diffuse emission.

490 citations


Journal ArticleDOI
TL;DR: The first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies was presented in this article.
Abstract: We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high signal-to-noise ratio ranging from 6 to 29. Its high reliability (purity above 95%) is further ensured by an extensive validation process based on Planck internal quality assessments and by external cross-identification and follow-up observations. Planck provides the first measured SZ signal for about 80% of the 169 previously-known ESZ clusters. Planck furthermore releases 30 new cluster candidates, amongst which 20 meet the ESZ signal-to-noise selection criterion. At the submission date, twelve of the 20 ESZ candidates were confirmed as new clusters, with eleven confirmed using XMM-Newton snapshot observations, most of them with disturbed morphologies and low luminosities. The ESZ clusters are mostly at moderate redshifts (86% with z below 0.3) and span more than a decade in mass, up to the rarest and most massive clusters with masses above 10^15 Msol.

413 citations


Journal ArticleDOI
TL;DR: In this paper, the authors constructed an all-sky map of the apparent temperature and optical depth of thermal dust emission using the Planck-HFI and IRAS data and correlated the optical depth maps to tracers of the atomic and molecular gas.
Abstract: We construct an all-sky map of the apparent temperature and optical depth of thermal dust emission using the Planck-HFI and IRAS data. The optical depth maps are correlated to tracers of the atomic and molecular gas. The correlation is linear in the lowest column density regions at high galactic latitudes. At high NH, the correlation is consistent with that of the lowest NH. In the intermediate NH range, we observe departure from linearity, with the dust optical depth in excess to the correlation. We attribute this excess emission to thermal emission by dust associated with a Dark-Gas phase, undetected in the available HI and CO measurements. We show the 2D spatial distribution of the Dark-Gas in the solar neighborhood and show that it extends around known molecular regions traced by CO. The average dust emissivity in the HI phase in the solar neighborhood follows roughly a power law distribution with beta = 1.8 all the way down to 3 mm, although the SED flattens slightly in the millimetre. The threshold for the existence of the Dark-Gas is found at NH = (8.0\pm 0.58) 10^{20} Hcm-2. Assuming the same dust emissivity at high frequencies for the dust in the atomic and molecular phases leads to an average XCO = (2.54\pm0.13) 10^{20} H2cm-2/(K km s-1). The mass of Dark-Gas is found to be 28% of the atomic gas and 118% of the CO emitting gas in the solar neighborhood. A possible origin for the Dark-Gas is the existence of a dark molecular phase, where H2 survives photodissociation but CO does not. The observed transition for the onset of this phase in the solar neighborhood (AV = 0.4 mag) appears consistent with recent theoretical predictions. We also discuss the possibility that up to half of the Dark-Gas could be in atomic form, due to optical depth effects in the HI measurements.

388 citations


Journal ArticleDOI
TL;DR: The Planck Early Release Compact Source Catalogue (ERCSC) as discussed by the authors is a large-scale source catalog that contains more than 15,000 unique sources with known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features.
Abstract: (Abridged) A brief description of the methodology of construction, contents and usage of the Planck Early Release Compact Source Catalogue (ERCSC), including the Early Cold Cores (ECC) and the Early Sunyaev-Zeldovich (ESZ) cluster catalogue is provided. The catalogue is based on data that consist of mapping the entire sky once and 60% of the sky a second time by Planck, thereby comprising the first high sensitivity radio/submillimetre observations of the entire sky. A Monte-Carlo algorithm based on the injection and extraction of artificial sources into the Planck maps was implemented to select reliable sources among all extracted candidates such that the cumulative reliability of the catalogue is >=90%. The 10sigma photometric flux density limit of the catalogue at |b|>30 deg is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30 and 857 GHz. Sources which are up to a factor of ~2 fainter than this limit, and which are present in "clean" regions of the Galaxy where the sky background due to emission from the interstellar medium is low, are included in the ERCSC if they meet the high reliability criterion. The Planck ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs. In addition, two early release catalogs that contain 915 cold molecular cloud core candidates and 189 SZ cluster candidates that have been generated using multi-frequency algorithms are presented. The entire source list, with more than 15000 unique sources, is ripe for follow-up characterisation with Herschel, ATCA, VLA, SOFIA, ALMA and other ground-based observing facilities.

287 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation, and derive maps of the dust temperature T, the dust spectral emissivity index beta, and the dust optical depth at 250 microns tau.
Abstract: Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7 % and +13 %, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by to the contribution of the J=2-1 and J=1-0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index beta, and the dust optical depth at 250 microns tau. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16-17 K in the diffuse regions to 13-14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T-beta anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and HI data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 microns per hydrogen atom tau/NH. We report an increase of tau/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.

243 citations


Journal ArticleDOI
TL;DR: In this article, the angular power spectra of CIB anisotropies from multipole l = 200 to l = 2000 at 217, 353, 545 and 857 GHz were determined using Planck maps of six regions of low Galactic dust emission with a total area of about 140 square degrees.
Abstract: Using Planck maps of six regions of low Galactic dust emission with a total area of about 140 square degrees, we determine the angular power spectra of cosmic infrared background (CIB) anisotropies from multipole l = 200 to l = 2000 at 217, 353, 545 and 857 GHz. We use 21-cm observations of HI as a tracer of thermal dust emission to reduce the already low level of Galactic dust emission and use the 143 GHz Planck maps in these fields to clean out cosmic microwave background anisotropies. Both of these cleaning processes are necessary to avoid significant contamination of the CIB signal. We measure correlated CIB structure across frequencies. As expected, the correlation decreases with increasing frequency separation, because the contribution of high-redshift galaxies to CIB anisotropies increases with wavelengths. We find no significant difference between the frequency spectrum of the CIB anisotropies and the CIB mean, with Delta I/I=15% from 217 to 857 GHz. In terms of clustering properties, the Planck data alone rule out the linear scale- and redshift-independent bias model. Non-linear corrections are significant. Consequently, we develop an alternative model that couples a dusty galaxy, parametric evolution model with a simple halo-model approach. It provides an excellent fit to the measured anisotropy angular power spectra and suggests that a different halo occupation distribution is required at each frequency, which is consistent with our expectation that each frequency is dominated by contributions from different redshifts. In our best-fit model, half of the anisotropy power at l=2000 comes from redshifts z 2 at 353 and 217 GHz, respectively.

227 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z < 0.5) detected at high signal-to-noise in the first Planck all-sky dataset.
Abstract: We present precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z <0.5) detected at high signal-to-noise in the first Planck all-sky dataset. The sample spans approximately a decade in total mass, 10^14 < M_500 < 10^15, where M_500 is the mass corresponding to a total density contrast of 500. Combining these high quality Planck measurements with deep XMM-Newton X-ray data, we investigate the relations between D_A^2 Y_500, the integrated Compton parameter due to the SZ effect, and the X-ray-derived gas mass M_g,500, temperature T_X, luminosity L_X, SZ signal analogue Y_X,500 = M_g,500 * T_X, and total mass M_500. After correction for the effect of selection bias on the scaling relations, we find results that are in excellent agreement with both X-ray predictions and recently-published ground-based data derived from smaller samples. The present data yield an exceptionally robust, high-quality local reference, and illustrate Planck's unique capabilities for all-sky statistical studies of galaxy clusters.

219 citations


Journal ArticleDOI
TL;DR: The results of comparison of Planck along with IRAS data with Green Bank Telescope 21-cm observations in 14 fields covering more than 800 square degrees at high Galactic latitude are presented in this article.
Abstract: This paper presents the first results of comparison of Planck along with IRAS data with Green Bank Telescope 21-cm observations in 14 fields covering more than 800 square degrees at high Galactic latitude. Galactic dust emission for fields with average HI column density lower than 2 x 10^20 cm^-2 is well correlated with 21-cm emission. The residual emission in these fields, once the HI-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. Fields with larger column densities show significant excess dust emission compared to the HI column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. Dust emission from intermediate-velocity clouds is detected with high significance. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T~20 K), lower sub-millimeter dust opacity, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000 GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes.

219 citations


Journal ArticleDOI
TL;DR: The first version of the C3PO (Early Cold Core Catalogue of Planck Objects) is presented in this article, in terms of their spatial distribution, temperature, distance, mass, and morphology.
Abstract: We present the statistical properties of the first version of the Cold Core Catalogue of Planck Objects (C3PO), in terms of their spatial distribution, temperature, distance, mass, and morphology. We also describe the statistics of the Early Cold Core Catalogue (ECC, delivered with the Early Release Compact Source Catalogue, ERCSC) that is the subset of the 915 most reliable detections of the complete catalogue. We have used the CoCoCoDeT algorithm to extract 10783 cold sources. Temperature and dust emission spectral index {\beta} values are derived using the fluxes in the IRAS 100 \mum band and the three highest frequency Planck bands. Temperature spans from 7K to 17K, and peaks around 13K. Data are not consistent with a constant value of {\beta} over the all temperature range. {\beta} ranges from 1.4 to 2.8 with a mean value around 2.1, and several possible scenarios are possible, including {\beta}(T) and the effect of multiple T components folded into the measurements. For one third of the objects the distances are obtained. Most of the detections are within 2 kpc in the Solar neighbourhood, but a few are at distances greater than 4 kpc. The cores are distributed from the deep Galactic plane, despite the confusion, to high latitudes (>30$^{\circle}$). The associated mass estimates range from 1 to $10^5$ solar masses. Using their physical properties these cold sources are shown to be cold clumps, defined as the intermediate cold sub-structures between clouds and cores. These cold clumps are not isolated but mostly organized in filaments associated with molecular clouds. The Cold Core Catalogue of Planck Objects (C3PO) is the first unbiased all-sky catalogue of cold objects. It gives an unprecedented statistical view to the properties of these potential pre-stellar clumps and offers a unique possibility for their classification in terms of their intrinsic properties and environment.

208 citations


Journal ArticleDOI
TL;DR: In this article, the authors used Planck maps and multi-frequency ancillary data to construct spectra for two known AME regions: the Perseus and Rho Ophiuchi molecular clouds.
Abstract: Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and Rho Ophiuchi molecular clouds. The spectra are well fitted by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20-40 GHz and are detected at high significances of 17.1 sigma for Perseus and 8.4 sigma for Rho Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In Rho Ophiuchi, the ~30 GHz peak is dominated by dense molecular gas, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irradiated low density atomic gas. The dust parameters are consistent with those derived from other measurements. We have also searched the Planck map at 28.5 GHz for candidate AME regions, by subtracting a simple model of the synchrotron, free-free, and thermal dust. We present spectra for two of the candidates; S140 and S235 are bright HII regions that show evidence for AME, and are well fitted by spinning dust models.

169 citations


Journal ArticleDOI
TL;DR: In this paper, the XMM-Newton follow-up for confirmation of Planck cluster candidates is presented, where a total of 21 candidates are confirmed as extended X-ray sources.
Abstract: We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (~10 ksec) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios (4 5 candidates. The sensitivity and spatial resolution of XMM-Newton allows unambiguous discrimination between clusters and false candidates. The 4 false candidates have S/N <= 4.1. A total of 21 candidates are confirmed as extended X-ray sources. Seventeen are single clusters, the majority of which are found to have highly irregular and disturbed morphologies (about ~70%). The remaining four sources are multiple systems, including the unexpected discovery of a supercluster at z=0.45. For 20 sources we are able to derive a redshift estimate from the X-ray Fe K line (albeit of variable quality). The new clusters span the redshift range 0.09 <= z <= 0.54, with a median redshift of z~0.37. A first determination is made of their X-ray properties including the characteristic size, which is used to improve the estimate of the SZ Compton parameter, Y_SZ. The follow-up validation programme has helped to optimise the Planck candidate selection process. It has also provided a preview of the X-ray properties of these newly-discovered clusters, allowing comparison with their SZ properties, and to the X-ray and SZ properties of known clusters observed in the Planck survey. Our results suggest that Planck may have started to reveal a non-negligible population of massive dynamically perturbed objects that is under-represented in X-ray surveys. However, despite their particular properties, these new clusters appear to follow the Y_SZ-Y_X relation established for X-ray selected objects, where Y_X is the product of the gas mass and temperature.

Journal ArticleDOI
Nabila Aghanim, Monique Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, Amedeo Balbi, A. J. Banday, R. B. Barreiro, Matthias Bartelmann, J. G. Bartlett, E. Battaner, K. Benabed, Alain Benoit, J.-P. Bernard, Marco Bersanelli, R. S. Bhatia, J. J. Bock, Anna Bonaldi, J. R. Bond, J. Borrill, François R. Bouchet, Michael L. Brown, M. Bucher, Carlo Burigana, P. Cabella, Jean-François Cardoso, A. Catalano, L. Cayón, Anthony Challinor, A. Chamballu, R.-R. Chary, Lung-Yih Chiang, C. Chiang, Gayoung Chon, P. R. Christensen, E. M. Churazov, D. L. Clements, S. Colafrancesco, Stéphane Colombi, F. Couchot, A. Coulais, B. P. Crill, F. Cuttaia, A. Da Silva, Håkon Dahle, L. Danese, P. de Bernardis, G. de Gasperis, A. de Rosa, G. de Zotti, J. Delabrouille, J.-M. Delouis, F.-X. Désert, Jose M. Diego, Klaus Dolag, S. Donzelli, Olivier Doré, U. Dörl, Marian Douspis, X. Dupac, George Efstathiou, Torsten A. Enßlin, Fabio Finelli, I. Flores, Olivier Forni, M. Frailis, E. Franceschi, S. Fromenteau, S. Galeotta, K. Ganga, Ricardo Génova-Santos, M. Giard, Giovanna Giardino, Y. Giraud-Héraud, J. González-Nuevo, K. M. Górski, Serge Gratton, A. Gregorio, Alessandro Gruppuso, D. L. Harrison, Sophie Henrot-Versille, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, Michael P. Hobson, W. A. Holmes, W. Hovest, Roger J. Hoyland, Kevin M. Huffenberger, Andrew H. Jaffe, W. C. Jones, Mika Juvela, E. Keihänen, R. Keskitalo, Theodore Kisner, R. Kneissl, Lloyd Knox, Hannu Kurki-Suonio 
TL;DR: In this article, the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-rays data.
Abstract: All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises ~ 1600 X-ray clusters with redshifts up to ~ 1 and spans a wide range in X-ray luminosity. The SZ signal is extracted for each object individually, and the statistical significance of the measurement is maximised by averaging the SZ signal in bins of X-ray luminosity, total mass, or redshift. The SZ signal is detected at very high significance over more than two decades in X-ray luminosity (10^43 erg/s < L_500 E(z)^-7/3 < 2 X 10^45 erg/s). The relation between intrinsic SZ signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-ray data. Planck measurements and X-ray based predictions are found to be in excellent agreement over the whole explored luminosity range. No significant deviation from standard evolution of the scaling relations is detected. For the first time the intrinsic scatter in the scaling relation between SZ signal and X-ray luminosity is measured and found to be consistent with the one in the luminosity -- mass relation from X-ray studies. There is no evidence of any deficit in SZ signal strength in Planck data relative to expectations from the X-ray properties of clusters, underlining the robustness and consistency of our overall view of intra-cluster medium properties.

Journal ArticleDOI
TL;DR: In this paper, the authors show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactocentricity of the Galactic disk, and the derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase.
Abstract: (abridged) Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely "ark gas", as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as other ancillary data. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12\mu m). Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for $(25\pm5)%$ (statistical) of the total emission at 30 GHz.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the origin of the millimetre excess in the Large and Small Magellanic Clouds (LMC and SMC) using the Planck data and the IRIS data at 100 micron.
Abstract: The integrated Spectral Energy Distributions of the Large and Small Magellanic Cloud appear significantly flatter than expected from dust models based on their FIR and radio emission. The origin of this millimetre excess is still unexplained, and is here investigated using the Planck data. The background CMB contribution is subtracted using an ILC method performed locally around the galaxies. The foreground emission from the Milky Way is subtracted. After subtraction, the emission of both galaxies correlates closely with the gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant excess is still present in the SMC SED. The Planck and IRIS data at 100 micron are combined to produce thermal dust temperature and optical depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but also shows the existence of a previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds. The average emissivity spectral index is found to be consistent with beta=1.5 and beta=1.2 below 500 microns for the LMC and SMC respectively, significantly flatter than the values observed in the Milky Way. Furthermore, there is evidence in the SMC for a further flattening of the SED in the sub-mm. The spatial distribution of the millimetre dust excess in the SMC follows the gas and thermal dust distribution. Different models are explored in order to fit the dust emission in the SMC. It is concluded that the millimetre excess is unlikely to be caused by very cold dust emission and that it could be due to a combination of spinning dust. emission and thermal dust emission by more amorphous dust grains than those present in our Galaxy.

Journal ArticleDOI
TL;DR: The data reported in Planck's Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz as mentioned in this paper.
Abstract: The data reported in Planck's Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measurement extends to the rarest and brightest sources in the sky. At lower frequencies (30, 44, and 70GHz) our counts are in very good agreement with estimates based on WMAP data, being somewhat deeper at 30 and 70GHz, and somewhat shallower at 44GHz. Planck's source counts at 143 and 217GHz join smoothly with the fainter ones provided by the SPT and ACT surveys over small fractions of the sky. An analysis of source spectra, exploiting Planck's uniquely broad spectral coverage, finds clear evidence of a steepening of the mean spectral index above about 70GHz. This implies that, at these frequencies, the contamination of the CMB power spectrum by radio sources below the detection limit is significantly lower than previously estimated.

Journal ArticleDOI
TL;DR: Spectral energy distributions and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data as mentioned in this paper.
Abstract: Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiplecomponents. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

Journal ArticleDOI
TL;DR: In this paper, the authors performed a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO) and provided the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources.
Abstract: (abridged) We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150pc) and remote (2kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size.

Journal ArticleDOI
TL;DR: In this article, the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500-N200) for the MaxBCG cluster catalogue is presented.
Abstract: We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500-N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-richness relations (N200-M500). We bin our individual measurements and detect the SZ signal down to the lowest richness systems (N200=10) with high significance, achieving a detection of the SZ signal in systems with mass as low as M500~5e13 Msolar. The observed Y500-N200 relation is well modeled by a power law over the full richness range. It has a lower normalisation at given N200 than predicted based on X-ray models and published mass-richness relations. An X-ray subsample, however, does conform to the predicted scaling, and model predictions do reproduce the relation between our measured bin-average SZ signal and measured bin-average X-ray luminosities. At fixed richness, we find an intrinsic dispersion in the Y500-N200 relation of 60% rising to of order 100% at low richness. Thanks to its all-sky coverage, Planck provides observations for more than 13,000 MaxBCG clusters and an unprecedented SZ/optical data set, extending the list of known cluster scaling laws to include SZ-optical properties. The data set offers essential clues for models of galaxy formation. Moreover, the lower normalisation of the SZ-mass relation implied by the observed SZ-richness scaling has important consequences for cluster physics and cosmological studies with SZ clusters.

Journal ArticleDOI
TL;DR: In this paper, the spectral energy distributions (SEDs) of distant submm galaxies are measured using parametric dust models to determine the range of dust temperatures and emissivities.
Abstract: The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the range of far-IR/submm wavelengths over which they have been observed. We here present the first results on the properties of nearby galaxies using these data. We match the ERCSC catalogue to IRAS-detected galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz), so that we can measure the spectral energy distributions (SEDs) of these objects from 60 to 850 microns. This produces a list of 1717 galaxies with reliable associations between Planck and IRAS, from which we select a subset of 468 for SED studies, namely those with strong detections in the three highest frequency Planck bands and no evidence of cirrus contamination. The SEDs are fitted using parametric dust models to determine the range of dust temperatures and emissivities. We find evidence for colder dust than has previously been found in external galaxies, with T<20K. Such cold temperatures are found using both the standard single temperature dust model with variable emissivity beta, or a two dust temperature model with beta fixed at 2. We also compare our results to studies of distant submm galaxies (SMGs) which have been claimed to contain cooler dust than their local counterparts. We find that including our sample of 468 galaxies significantly reduces the distinction between the two populations. Fits to SEDs of selected objects using more sophisticated templates derived from radiative transfer models confirm the presence of the colder dust found through parameteric fitting. We thus conclude that cold (T<20K) dust is a significant and largely unexplored component of many nearby galaxies.

Journal ArticleDOI
TL;DR: In this paper, the performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers.
Abstract: The performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20K), a 4He Joule-Thomson cooler (4.7K), and a 3He-4He dilution cooler (1.4K and 0.1K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The HFI bolometer plate reached 93mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, andoperates at a mean temperature of 384K. At the other end of the spacecraft, the telescope baffle operates at 42.3K and the telescope primary mirror operates at 35.9K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data.

Journal ArticleDOI
Nabila Aghanim, Monique Arnaud, M. Ashdown, Fernando Atrio-Barandela, J. Aumont, C. Baccigalupi, Amedeo Balbi, A. J. Banday, R. B. Barreiro, James G. Bartlett, E. Battaner, K. Benabed, Alain Benoit, J.-P. Bernard, Marco Bersanelli, R. S. Bhatia, Hans Böhringer, Anna Bonaldi, J. R. Bond, Stefano Borgani, J. Borrill, François R. Bouchet, Michael L. Brown, Carlo Burigana, P. Cabella, Christopher Cantalupo, B. Cappellini, P. Carvalho, A. Catalano, L. Cayón, Lung-Yih Chiang, C. Chiang, G. Chon, P. R. Christensen, E. M. Churazov, D. L. Clements, S. Colafrancesco, Stéphane Colombi, B. P. Crill, F. Cuttaia, A. Da Silva, Håkon Dahle, L. Danese, Ocleto D'Arcangelo, R. J. Davis, P. de Bernardis, G. de Gasperis, G. de Zotti, J. Delabrouille, J.-M. Delouis, J. Démoclès, F.-X. Désert, Clive Dickinson, Jose M. Diego, H. Dole, S. Donzelli, Olivier Doré, Marian Douspis, X. Dupac, George Efstathiou, Torsten A. Enßlin, H. K. Eriksen, Fabio Finelli, I. Flores-Cacho, Olivier Forni, P. Fosalba, M. Frailis, E. Franceschi, S. Fromenteau, S. Galeotta, K. Ganga, Ricardo Génova-Santos, M. Giard, J. González-Nuevo, R. González-Riestra, K. M. Górski, A. Gregorio, A. Gruppuso, F. K. Hansen, D. L. Harrison, Pekka Heinämäki, C. Hernández-Monteagudo, S. R. Hildebrandt, E. Hivon, Michael P. Hobson, G. Hurier, Andrew H. Jaffe, W. C. Jones, Mika Juvela, E. Keihänen, R. Keskitalo, Theodore Kisner, R. Kneissl, Hannu Kurki-Suonio, G. Lagache, Anne Lähteenmäki, J.-M. Lamarre, Anthony Lasenby, Charles R. Lawrence 
TL;DR: The first results on PLCK G266.6-27.3, a galaxy cluster candidate detected at a signal-to-noise ratio of 5 in the Planck All Sky survey, were presented in this paper.
Abstract: We present first results on PLCK G266.6-27.3, a galaxy cluster candidate detected at a signal-to-noise ratio of 5 in the Planck All Sky survey. An XMM-Newton validation observation has allowed us to confirm that the candidate is a bona fide galaxy cluster. With these X-ray data we measure an accurate redshift, z = 0.94 +/- 0.02, and estimate the cluster mass to be M_500 = (7.8 +/- 0.8)e+14 solar masses. PLCK G266.6-27.3 is an exceptional system: its luminosity of L_X(0.5-2.0 keV)=(1.4 +/- 0.05)e+45 erg/s, equals that of the two most luminous known clusters in the z > 0.5 universe, and it is one of the most massive clusters at z~1. Moreover, unlike the majority of high-redshift clusters, PLCK G266.6-27.3 appears to be highly relaxed. This observation confirms Planck's capability of detecting high-redshift, high-mass clusters, and opens the way to the systematic study of population evolution in the exponential tail of the mass function.

Journal ArticleDOI
TL;DR: In this paper, the spectral energy distributions of a sample of "extreme" radio sources were analyzed using the Planck Early Release Compact Source Catalog (ERCSC) with quasi-simultaneous ground-based observations, as well as archival data, at frequencies below or overlapping Planck frequency bands.
Abstract: Planck's all sky surveys at 30-857 GHz provide an unprecedented opportunity to follow the radio spectra of a large sample of extragalactic sources to frequencies 2-20 times higher than allowed by past, large area, ground-based surveys. We combine the results of the Planck Early Release Compact Source Catalog (ERCSC) with quasi-simultaneous ground-based observations, as well as archival data, at frequencies below or overlapping Planck frequency bands, to validate the astrometry and photometry of the ERCSC radio sources and study the spectral features shown in this new frequency window opened by Planck. The ERCSC source positions and flux density scales are found to be consistent with the ground-based observations. We present and discuss the spectral energy distributions (SEDs) of a sample of "extreme" radio sources to illustrate the richness of the ERCSC for the study of extragalactic radio sources. Variability is found to play a role in the unusual spectral features of some of these sources.

Journal ArticleDOI
TL;DR: In this article, the authors present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.3 in the same 10-month survey maps used in the construction of the Early SZ sample.
Abstract: We present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.5

01 Jan 2011
Abstract: Planck has observed the entire sky from 30 GHz to 857 GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. This technique provides the necessary information to study dust properties (emissivity, temperature, etc.), as well as other emission mechanisms as a function of Galactic radius. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely “dark gas”, as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from IRAS and DIRBE along with radio data at 1.4 GHz. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12 μm). The resulting SEDs allow us to explore the contribution of various emission mechanisms to the Planck signal. Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We find the dust opacity in the solar neighbourhood, τ/NH = 0.92±0.05×10−25 cm2 at 250 μm, with no significant variation with Galactic radius, even though the dust temperature is seen to vary from over 25 K to under 14 K. Furthermore, we show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. Anomalous emission is not clearly detected in the ionised phase, as free-free emission is seen to dominate. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for (25 ± 5)% (statistical) of the total emission at 30 GHz.

Posted Content
11 Jan 2011
TL;DR: In this article, the performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers.
Abstract: The performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20K), a 4He Joule-Thomson cooler (4.7K), and a 3He-4He dilution cooler (1.4K and 0.1K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The HFI bolometer plate reached 93mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, andoperates at a mean temperature of 384K. At the other end of the spacecraft, the telescope baffle operates at 42.3K and the telescope primary mirror operates at 35.9K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data.