Author
Sachin Kumar Singh
Other affiliations: Indian Institute of Technology Guwahati, Schiller International University, Deen Dayal Upadhyay Gorakhpur University
Bio: Sachin Kumar Singh is an academic researcher from Banaras Hindu University. The author has contributed to research in topic(s): Mesophase & Liquid crystal. The author has an hindex of 11, co-authored 26 publication(s) receiving 274 citation(s). Previous affiliations of Sachin Kumar Singh include Indian Institute of Technology Guwahati & Schiller International University.
Topics: Mesophase, Liquid crystal, Alkoxy group, Mesogen, Raman spectroscopy
Papers
More filters
[...]
TL;DR: In this article, the authors developed a simple, sensitive, label-free and real time detection method for mercuric ions (Hg2+) in water using liquid crystals (LCs).
Abstract: We developed a simple, sensitive, label-free and real time detection method for mercuric ions (Hg2+) in water using liquid crystals (LCs). In this system, newly synthesized amphiphilic potassium N-methyl-N-dodecyldithiocarbamate (MeDTC) was doped in 4-cyano-4′-pentyl biphenyl (5CB) LC, which align LC molecules at aqueous interface and polar head group of the amphiphile acts as mecuric ion specific chelating ligand. When this sensor system was incubated in the aqueous solution containing Hg2+ ions, a dark to bright transition of the image of LCs was observed. This was caused due to rapid and stable complex formation between dithiocarbamate chelating group of MeDTC with Hg2+ ions at aqueous interface, which disrupted the orientation of LCs giving bright texture. The limit of detection of the system for aqueous Hg2+ ion is 0.5 μM. This sensor did not respond to other metal ions like Pb2+, Cd2+, Cu2+, Zn2+, Na+, Mg2+ and Ca2+, which are common environmental interference in water. We also demonstrated that this sensor is capable of detecting Hg2+ ions in real water samples (tap water). The very simple and effective procedure reported here should facilitate the development of real time, portable and reliable LC based sensor for mercury pollution control.
35 citations
[...]
TL;DR: In this paper, a series of Schiff base calamitic liquid crystal; methyl 4-(4′-nalkoxybenzylideneamino)benzoate (MABAB), H2n+1C n OC6H4C(H)=NC6H 4COOCH3 (n = 6, 8, 10, 12, 14, 16) has been synthesized and characterised by elemental analyses, Fourier transform infrared spectroscopy (FT-IR), 1H and 13C Nuclear Magnetic Resonance (NMR) spectrograph
Abstract: A new series of Schiff base calamitic liquid crystal; methyl 4-(4′-n-alkoxybenzylideneamino)benzoate (MABAB), H2n+1C n OC6H4C(H)=NC6H4COOCH3 (n = 6, 8, 10, 12, 14, 16) has been synthesised and characterised by elemental analyses, Fourier transform infrared spectroscopy (FT-IR), 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy. The mesomorphic properties of these compounds were studied by differential scanning calorimetry (DSC) and polarising optical microscopy (POM). All members of the series exhibit enantiotropic smectic A (SmA) mesophase. Temperature-dependent micro-Raman study of one of the members, MABAB-10 has been employed to identify phase transitions and the molecular rearrangement therein. Analysis of Raman marker bands; C–H in-plane bending, C–C stretching of phenyl rings and –C(H)=N– linking group of core confirms the transitions clearly as observed through DSC and POM. An in situ Raman measurement of C–H in-plane bending mode has also been performed to visualise the molecular changes m...
20 citations
[...]
TL;DR: Spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.
Abstract: Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV–vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV–visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu–Crn–urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.
20 citations
[...]
TL;DR: The mesomorphic properties of newly synthesized homologous series of calamitic liquid crystals containing ester and Schiff base groups as linker and Raman marker bands of phenyl rings, Schiff base and ester groups confirm the phase transitions.
Abstract: The mesomorphic properties of newly synthesized homologous series of calamitic liquid crystals; methyl 4-[4-(4-alkoxy benzoyloxy)benzylideneamino]benzoates, H2n+1CnOC6H4COOC6H4C(H) N C6H4COOCH3; n = 6, 8, 10, 12, 14, 16 (MABBAB-n) containing ester and Schiff base groups as linker have been studied by temperature dependent micro-Raman study, differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). All members of this series exhibit enantiotropic smectic A (SmA) mesophase with oily streak and focal conic textures. Analyses of Raman marker bands of phenyl rings, Schiff base and ester groups of MABBAB-10 confirm the phase transitions. The Raman study also gives an evidence of breaking of weak intermolecular hydrogen bonds associated with ester groups and formation of new hydrogen bonds through C N bond at Cr → SmA phase transition. The monomer and dimer were optimized and vibrational assignment of MABBAB-10 was also done with density functional theoretical (DFT) technique to understand the experimental results.
16 citations
[...]
TL;DR: In this article, a liquid crystal based sensor was developed to detect hydrazine vapour using cross-polarizing optical microscopy under crossed polarizers, which was shown to have a dark to bright optical texture upon exposure of hydrazines vapours.
Abstract: A novel liquid crystal (LC) based sensor to detect trace level amount of hydrazine vapour has been developed. The LC 4′-pentyl-4-biphenylcarbonitrile (5CB) doped with 0.5 wt% 4-decyloxy benzaldehyde (DBA) shows dark to bright optical texture upon exposure of hydrazine vapours as revealed by polarizing optical microscopy under crossed polarizers. The hydrazine interacts with the doped DBA and form diimine compound which disrupt the orientation of aligned 5CB. The interaction between DBA and hydrazine has been also studied by Raman spectroscopy.
14 citations
Cited by
More filters
[...]
TL;DR: In this article, the authors summarized the published innovations in nanomaterial-based optical sensors for the detection of Hg 2+ according to different sensing strategies, including colorimetric, fluorescent and surface enhanced Raman scattering detection.
Abstract: As one of the most toxic heavy metals, mercury ion (Hg 2+ ) has become a concern focus for its severe threats to environment and human health. As a result, it is of great importance to develop novel methods to realize the recognition and quantification of Hg 2+ . The past decades witness the development of nanomaterial-based optical sensors for Hg 2+ detection, showing the benefits of simplicity, rapidity, high sensitivity and selectivity, and cost-effectiveness. The reported methods have allowed the detectability down to nanomolar concentrations or much lower levels, and proved their practical applications for detecting and quantifying Hg 2+ in synthetic solutions or natural water samples. In this review, we summarize the published innovations in nanomaterial-based optical sensors for the detection of Hg 2+ according to different sensing strategies, including colorimetric, fluorescent and surface enhanced Raman scattering detection. Moreover, some challenges and significant attempts related to these methods are also discussed.
152 citations
[...]
TL;DR: A facile one-step, low-temperature, nonhydrolytic approach to in situ synthesizing amino-functionalized TiO2 nanoparticles (abbreviated as NH2 -TiO2 NPs) is developed by chemical bonding of amino (-NH2 ) groups, via TiN bonds, onto the surface of TiO1 NPs.
Abstract: Titanium oxide (TiO2 ) has been commonly used as an electron transport layer (ETL) of regular-structure perovskite solar cells (PSCs), and so far the reported PSC devices with power conversion efficiencies (PCEs) over 21% are mostly based on mesoporous structures containing an indispensable mesoporous TiO2 layer. However, a high temperature annealing (over 450 °C) treatment is mandatory, which is incompatible with low-cost fabrication and flexible devices. Herein, a facile one-step, low-temperature, nonhydrolytic approach to in situ synthesizing amino-functionalized TiO2 nanoparticles (abbreviated as NH2 -TiO2 NPs) is developed by chemical bonding of amino (-NH2 ) groups, via TiN bonds, onto the surface of TiO2 NPs. NH2 -TiO2 NPs are then incorporated as an efficient ETL in n-i-p planar heterojunction (PHJ) PSCs, affording PCE over 21%. Cs0.05 FA0.83 MA0.12 PbI2.55 Br0.45 (abbreviated as CsFAMA) PHJ PSC devices based on NH2 -TiO2 ETL exhibit the best PCE of 21.33%, which is significantly higher than that of the devices based on the pristine TiO2 ETL (19.82%) and is close to the record PCE for devices with similar structures and fabrication procedures. Besides, due to the passivation of the surface trap states of perovskite film, the hysteresis of current-voltage response is significantly suppressed, and the ambient stability of devices is improved upon amino functionalization.
116 citations
[...]
TL;DR: The experimental results suggest that the adsorption efficiency of DOX is dominated by the strong complexation, electrostatic interactions between DOX molecules and the Cu-BC samples, which hold the significant potential for enhancing the effectiveness to remove DOX from water.
Abstract: In this study, the effect factors and mechanisms of doxycycline hydrochloride (DOX) adsorption on copper nitrate modified biochar (Cu-BC) was investigated. Cu-BC absorbent was synthesized through calcination of peanut shells biomass at 450°C and then impregnation with copper nitrate. The Cu-BC has exhibited excellent sorption efficiency about 93.22% of doxycycline hydrochloride from aqueous solution, which was double higher than that of the unmodified biochar. The experimental results suggest that the adsorption efficiency of DOX on the Cu-BC is dominated by the strong complexation, electrostatic interactions between DOX molecules and the Cu-BC samples. Comprehensively considering the cost, efficiency and the application to realistic water, the Cu-BC hold the significant potential for enhancing the effectiveness to remove DOX from water.
95 citations
[...]
TL;DR: In this article, the authors focus on the portable and smart devices integrated with nanomaterials for monitoring heavy metal ions (HMIs) and summarize the miniaturization, portability, and commercialization of HMIs detection devices.
Abstract: With increasing concerns of ecological environment, safe drinkable water and healthy food, the detection for heavy metal ions (HMIs) becomes an attractive research field. On the basis of optical, electrical and other signals from nanomaterials, many interesting methods and portable devices for detection of HMIs are growing flourishingly. In this review, we focus on the portable and smart devices integrated with nanomaterials for monitoring HMIs. The interesting design of the miniaturization, portability, and commercialization of HMIs detection devices are summarized and introduced comprehensively.
50 citations
[...]
TL;DR: This review presents an overview of the state of the art in liquid crystals based sensing scheme and highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystalsbased sensing scheme.
Abstract: In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme.
49 citations