scispace - formally typeset
Search or ask a question

Showing papers by "Sandro Barone published in 2016"


Journal ArticleDOI
TL;DR: This paper aims at defining a CAD/CAM framework for the accurate planning of flapless dental implant surgery and embraces three major applications: freeform modelling, computer-aided surgical planning and customised template modelling, and additive manufacturing of guided surgery template.
Abstract: In the field of oral rehabilitation, the combined use of 3D imaging technologies and computer-guided approaches allows the development of reliable tools to be used in preoperative assessment of implant placement. In particular, the accurate transfer of the virtual planning into the operative field through surgical guides represents the main challenge of modern dental implantology. Guided implant positioning allows surgical and prosthetic approaches with minimal trauma by reducing treatment time and decreasing patient’s discomfort. This paper aims at defining a CAD/CAM framework for the accurate planning of flapless dental implant surgery. The system embraces three major applications: (1) freeform modelling, including 3D tissue reconstruction and 2D/3D anatomy visualization, (2) computer-aided surgical planning and customised template modelling, (3) additive manufacturing of guided surgery template. The tissue modelling approach is based on the integration of two maxillofacial imaging techniques: tomographic scanning and surface optical scanning. A 3D virtual maxillofacial model is created by matching radiographic data, captured by a CBCT scanner, and surface anatomical data, acquired by a structured light scanner. The pre-surgical planning process is carried out and controlled within the CAD application by referring to the integrated anatomical model. A surgical guide is then created by solid modelling and manufactured by additive techniques. Two different clinical cases have been approached by inserting 11 different implants. CAD-based planned fixture placements have been transferred into the clinical field by customised surgical guides, made of a biocompatible resin and equipped with drilling sleeves.

34 citations


Journal ArticleDOI
TL;DR: C cone beam computed tomography (CBCT) has gained popularity in digital dentistry for 3D imaging of jawbones and teeth, but the anatomy of a maxillofacial region complicates the assessment of tooth geometry and anatomical location when using standard orthogonal views of the CT data set.
Abstract: Dedicated imaging methods are among the most important tools of modern computer-aided medical applications. In the last few years, cone beam computed tomography (CBCT) has gained popularity in digital dentistry for 3D imaging of jawbones and teeth. However, the anatomy of a maxillofacial region complicates the assessment of tooth geometry and anatomical location when using standard orthogonal views of the CT data set. In particular, a tooth is defined by a sub-region, which cannot be easily separated from surrounding tissues by only considering pixel grey-intensity values. For this reason, an image enhancement is usually necessary in order to properly segment tooth geometries. In this paper, an anatomy-driven methodology to reconstruct individual 3D tooth anatomies by processing CBCT data is presented. The main concept is to generate a small set of multi-planar reformation images along significant views for each target tooth, driven by the individual anatomical geometry of a specific patient. The reformation images greatly enhance the clearness of the target tooth contours. A set of meaningful 2D tooth contours is extracted and used to automatically model the overall 3D tooth shape through a B-spline representation. The effectiveness of the methodology has been verified by comparing some anatomy-driven reconstructions of anterior and premolar teeth with those obtained by using standard tooth segmentation tools. Copyright © 2015 John Wiley & Sons, Ltd.

33 citations


Journal ArticleDOI
TL;DR: A numerical model for customised orthodontic treatments planning is proposed by means of the finite element method and treatments considering rotation movements for a maxillary incisor and amaxillary canine have been analysed by using multi-tooth models.
Abstract: In the field of orthodontics, the use of Removable Thermoplastic Appliances (RTAs) to treat moderate malocclusion problems is progressively replacing traditional fixed brackets. Generally, these orthodontic devices are designed on the basis of individual anatomies and customised requirements. However, many elements may affect the effectiveness of a RTA-based therapy: accuracies of anatomical reference models, clinical treatment strategies, shape features and mechanical properties of the appliances. In this paper, a numerical model for customised orthodontic treatments planning is proposed by means of the finite element method. The model integrates individual patient’s teeth, periodontal ligaments, bone tissue with structural and geometrical attributes of the appliances. The anatomical tissues are reconstructed by a multi-modality imaging technique, which combines 3D data obtained by an optical scanner (visible tissues) and a computerised tomography system (internal tissues). The mechanical interactions between anatomical shapes and appliance models are simulated through finite element analyses. The numerical approach allows a dental technician to predict how the RTA attributes affect tooth movements. In this work, treatments considering rotation movements for a maxillary incisor and a maxillary canine have been analysed by using multi-tooth models.

28 citations


Journal ArticleDOI
TL;DR: The hypothesis that the mathematical relationships between M:F and tooth movement are distinct, depending on force system directions is tested, and it is confirmed that a hyperbolic equation relates the distance and M:f.

15 citations


Proceedings ArticleDOI
21 Feb 2016
TL;DR: A patient-specific framework has been developed to simulate orthodontic tooth movements by using aligners and a finite element model has been created in order to optimise the aligner’s thickness with regard to the magnitude of the force-moment system delivered to a mandibular central incisor during bucco-lingual tipping.
Abstract: In recent years, the public demand of less invasive orthodontic treatments has led to the development of appliances that are smaller, lower profile and more transparent with respect to conventional brackets and wires. Among aesthetic appliances, removable thermoplastic aligners gained instant appeal to patients since able to perform comprehensive orthodontic treatments without sacrificing comfort issues. The aligner must deliver an appropriate force in order to move the tooth into the expected position. However, at present, the relationship between applied force and aligner properties (i.e., aligner’s thickness) is poorly understood. In this paper, a patient-specific framework has been developed to simulate orthodontic tooth movements by using aligners. In particular, a finite element model has been created in order to optimise the aligner’s thickness with regard to the magnitude of the force-moment system delivered to a mandibular central incisor during bucco-lingual tipping.

7 citations


Book ChapterDOI
21 Feb 2016
TL;DR: A patient-specific framework has been developed with the aim of simulating orthodontic tooth movements by using plastic aligners, and the effect of a non-uniform aligner’s thickness and of a customized initial offset between the aligner and the patient dentition were studied.
Abstract: In the last decade, orthodontic removable thermoplastic aligners have become a common alternative to conventional fixed brackets and wires. However, the wide spread of this typology of orthodontic treatment was not followed by an adequate scientific investigation about its biomechanical effects onto the teeth. In the present work, a patient-specific framework has been developed with the aim of simulating orthodontic tooth movements by using plastic aligners. A maxillary and a mandibular dental arch were reconstructed by combining optical and radiographic imaging methods. A Finite Element (FE) model was then created to analyze two different aligner configurations. In particular, the effect of a non-uniform aligner’s thickness and of a customized initial offset between the aligner and the patient dentition were studied. The force-moment systems delivered by the aligner to a mandibular central incisor during labiolingual tipping, and to a maxillary central incisor during rotation were analyzed and discussed.

1 citations