scispace - formally typeset
Search or ask a question

Showing papers by "Sanjay Wategaonkar published in 2021"


Journal ArticleDOI
TL;DR: In this paper, a comprehensive report on the spectroscopic and computational investigations of the hydrogen bonded (H-bonded) complexes of Me2O and Me2S with seven para-substituted Hbond donor phenols was presented.
Abstract: In this perspective, we present a comprehensive report on the spectroscopic and computational investigations of the hydrogen bonded (H-bonded) complexes of Me2O and Me2S with seven para-substituted H-bond donor phenols. The salient finding was that although the dissociation energies, D0, of the Me2O complexes were consistently higher than those of the analogous Me2S complexes, the red-shifts in phenolic O–H frequencies, Δν(O–H), showed the exactly opposite trend. This is in contravention of the general perception that the red shift in the X–H stretching frequency in the X–H⋯Y hydrogen bonded complexes is a reliable indicator of H-bond strength (D0), a concept popularly known as the Badger–Bauer rule. This is also in contrast to the trend reported for the H-bonded complexes of H2S/H2O with several para substituted phenols of different pKa values wherein the oxygen centered hydrogen bonded (OCHB) complexes consistently showed higher Δν(O–H) and D0 compared to those of the analogous sulfur centered hydrogen bonded (SCHB) complexes. Our effort was to understand these intriguing observations based on the spectroscopic investigations of 1 : 1 complexes in combination with a variety of high level quantum chemical calculations. Ab initio calculations at the MP2 level and the DFT calculations using various dispersion corrected density functionals (including DFT-D3) were performed on counterpoise corrected surfaces to compute the dissociation energy, D0, of the H-bonded complexes. The importance of anharmonic frequency computations is underscored as they were able to correctly reproduce the observed trend in the relative OH frequency shifts unlike the harmonic frequency computations. We have attempted to find a unified correlation that would globally fit the observed red shifts in the O–H frequency with the H-bonding strength for the four bases, namely, H2S, H2O, Me2O, and Me2S, in this set of H-bond donors. It was found that the proton affinity normalized Δν(O–H) values scale very well with the H-bond strength.

2 citations


Journal ArticleDOI
TL;DR: In this paper, the N-H···N hydrogen bond dissociation energy in the ground state and in the cationic state was determined to be 10.36 ± 0.14 and 27.55 ± 0.20 kcal mol-1, respectively.
Abstract: The spectroscopic characterization of the benzimidazole (BIM) homodimer was carried out in a molecular beam in the ground state as well as in the cationic state using the R2PI and RIDIR methods. Primarily, interest in the dimer was due to the observation of a proton-transferred BIM fragment at energies well below its thermodynamic threshold (i.e., barely above the ionization energy of the dimer where fragmentation was not expected). The detailed photofragmentation studies of the homodimer combined with spectroscopic observations and quantum chemical computations of the excited states established that the proton transfer from one subunit to the other occurs via conical intersections connecting the locally excited state, the charge-transfer state, and the ground state. In this study, we have also determined the N-H···N hydrogen bond dissociation energy in the ground state and in the cationic state to be 10.36 ± 0.14 and 27.55 ± 0.20 kcal mol-1, respectively. Incidentally, this happens to be the first such report on the dissociation energy of the N-H···N hydrogen bond.

1 citations