scispace - formally typeset
Search or ask a question

Showing papers by "Shuxun Yu published in 2018"


Journal ArticleDOI
TL;DR: Results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton, and the genetic variations and candidate genes identified in this study lay a foundation for cultivating moderately short and compact varieties in future Chinese cotton-breeding programs.
Abstract: Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation for cultivating moderately short and compact varieties in future Chinese cotton-breeding programs.

53 citations


Journal ArticleDOI
25 Jan 2018-PLOS ONE
TL;DR: The over-expression of GhWRKY17 in Arabidopsis up-regulated the senescence-associated genes AtWRKY53, AtSAG12 and AtSAg13, enhancing the plant’s susceptibility to leaf senescences and laying the foundation for further analysis and study of the functions of WRKY genes in cotton.
Abstract: WRKY transcription factors play important roles in plant defense, stress response, leaf senescence, and plant growth and development. Previous studies have revealed the important roles of the group IIa GhWRKY genes in cotton. To comprehensively analyze the group IIa GhWRKY genes in upland cotton, we identified 15 candidate group IIa GhWRKY genes in the Gossypium hirsutum genome. The phylogenetic tree, intron-exon structure, motif prediction and Ka/Ks analyses indicated that most group IIa GhWRKY genes shared high similarity and conservation and underwent purifying selection during evolution. In addition, we detected the expression patterns of several group IIa GhWRKY genes in individual tissues as well as during leaf senescence using public RNA sequencing data and real-time quantitative PCR. To better understand the functions of group IIa GhWRKYs in cotton, GhWRKY17 (KF669857) was isolated from upland cotton, and its sequence alignment, promoter cis-acting elements and subcellular localization were characterized. Moreover, the over-expression of GhWRKY17 in Arabidopsis up-regulated the senescence-associated genes AtWRKY53, AtSAG12 and AtSAG13, enhancing the plant's susceptibility to leaf senescence. These findings lay the foundation for further analysis and study of the functions of WRKY genes in cotton.

28 citations


Journal ArticleDOI
TL;DR: The results indicate that GhPELs play significant and functionally diverse roles in the development of different tissues, especially in pollen, fiber and the auxin signaling pathway.
Abstract: Pectin is a major component and structural polysaccharide of the primary cell walls and middle lamella of higher plants Pectate lyase (PEL, EC 4222), a cell wall modification enzyme, degrades de-esterified pectin for cell wall loosening, remodeling and rearrangement Nevertheless, there have been few studies on PEL genes and no comprehensive analysis of the PEL gene family in cotton We identified 53, 42 and 83 putative PEL genes in Gossypium raimondii (D5), Gossypium arboreum (A2), and Gossypium hirsutum (AD1), respectively These PEL genes were classified into five subfamilies (I-V) Members from the same subfamilies showed relatively conserved gene structures, motifs and protein domains An analysis of gene chromosomal locations and gene duplication revealed that segmental duplication likely contributed to the expansion of the GhPELs The 2000 bp upstream sequences of all the GhPELs contained auxin response elements A transcriptomic data analysis showed that 62 GhPELs were expressed in various tissues Notably, most (29/32) GhPELs of subfamily IV were preferentially expressed in the stamen, and five GhPELs of subfamily V were prominently expressed at the fiber elongation stage In addition, qRT-PCR analysis revealed the expression characteristics of 24 GhPELs in four pollen developmental stages and significantly different expression of some GhPELs between long- and short-fiber cultivars Moreover, some members were responsive to IAA treatment The results indicate that GhPELs play significant and functionally diverse roles in the development of different tissues In this study, we comprehensively analyzed PELs in G hirsutum, providing a foundation to better understand the functions of GhPELs in different tissues and pathways, especially in pollen, fiber and the auxin signaling pathway

26 citations


Journal ArticleDOI
07 Mar 2018-PLOS ONE
TL;DR: 1,932 differentially expressed genes (DEGs) responding to NO in upland cotton are identified using high throughput tag sequencing and identified the involvement of NO in the stress response.
Abstract: Nitric oxide (NO) is an important signaling molecule with diverse physiological functions in plants. It is therefore important to characterize the downstream genes and signal transduction networks modulated by NO. Here, we identified 1,932 differentially expressed genes (DEGs) responding to NO in upland cotton using high throughput tag sequencing. The results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 25 DEGs showed good consistency. Gene Ontology (GO) and KEGG pathway were analyzed to gain a better understanding of these DEGs. We identified 157 DEGs belonging to 36 transcription factor (TF) families and 72 DEGs related to eight plant hormones, among which several TF families and hormones were involved in stress responses. Hydrogen peroxide and malondialdehyde (MDA) contents were increased, as well related genes after treatment with sodium nitroprusside (SNP) (an NO donor), suggesting a role for NO in the plant stress response. Finally, we compared of the current and previous data indicating a massive number of NO-responsive genes at the large-scale transcriptome level. This study evaluated the landscape of NO-responsive genes in cotton and identified the involvement of NO in the stress response. Some of the identified DEGs represent good candidates for further functional analysis in cotton.

26 citations


Journal ArticleDOI
TL;DR: This study reveals the first report of TRX family genes in upland cotton, however further studies are needed to elucidate their specific functions in cotton plant.
Abstract: Thioredoxins (TRX) are small molecules of proteins that are present in all organisms. TRXs play an important role in diverse functions of plant growth and development. In this study, we performed genome-wide, characterization and expression levels of TRX gene family in cotton. A total of 150 GhTRX proteins were identified in upland cotton and classified into five subfamilies based on their domain compositions. Phylogenetic tree analysis divided TRX genes into seven subgroups. GhTRX genes covered all upland cotton chromosomes, with duplicated gene events. Ka/Ks ratio of three gene pairs was less than 1, suggesting purifying selection. The functions of GhTRX genes were studied using gene ontology, protein localization, and promoter analysis. Furthermore, six GhTRX genes were randomly selected to examine their expression level in cotton development and under various exogenous treatments. The genes showed high expressions in various tissues and at different stages of leaf senescence, also showed high expression under abscisic acid, ethylene, drought, and salinity. This study reveals the first report of TRX family genes in upland cotton. However further studies are needed to elucidate their specific functions in cotton plant.

13 citations


Journal ArticleDOI
TL;DR: The identification of stable QTLs adds valuable information for further QTL fine mapping and gene positional cloning for fiber quality genetic detection and provides useful markers for further molecular breeding in enhancing fiber quality.
Abstract: Gossypium hirsutum L. is the most important fiber crop worldwide and contributes to more than 95% of global cotton production. Marker-assisted selection (MAS) is an effective approach for improving fiber quality, and quantitative trait loci (QTL) mapping of fiber quality traits is important for cotton breeding. In this study, a permanent intra-specific recombinant inbred line (RIL) population containing 137 families was used for fiber quality testing. Based on a previously reported high-density genetic map with an average marker distance of 0.63 cM, 186 additive QTLs were obtained for five fiber quality traits over five consecutive years, including 39 for fiber length (FL), 36 for fiber strength (FS), 50 for fiber uniformity (FU), 33 for micronaire (MC) and 28 for fiber elongation (FE). Three stable QTLs, qMC-A4-1, qMC-D2-3 and qFS-D9-1, were detected in four datasets, and another eight stable QTLs, qMC-A4-2, qMC-D11-2, qFU-A9-1, qFU-A10-4, qFS-D11-1, qFL-D9-2, qFL-D11-1 and qFE-A3-2, were detected in three datasets. The annotated genes in these 11 stable QTLs were collected, and these genes included many transcription factors with functions during fiber development. 33 QTL coincidence regions were found, and these involved nearly half of the total QTLs. Four chromosome regions containing at least 6 QTLs were promising for fine mapping. In addition, 41 pairs of epistatic QTLs (e-QTLs) were screened, including 6 for FL, 30 for FS, 2 for FU and 3 for MC. The identification of stable QTLs adds valuable information for further QTL fine mapping and gene positional cloning for fiber quality genetic detection and provides useful markers for further molecular breeding in enhancing fiber quality.

11 citations


Journal ArticleDOI
TL;DR: The results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v1 mutant, which has implications for cotton breeding.
Abstract: The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v1 mutant. The GhChlI mutation not only provides a tool for understanding the associations of CHLI protein function and the chlorophyll biosynthesis pathway but also has implications for cotton breeding.

10 citations


Journal ArticleDOI
TL;DR: Nine gene families were selected according to their expression levels during leaf senescence from the authors' laboratory database and four cotton genes CotAD_07559, CotAD-37422, Cot AD-21204 and Cotad-54353 were found as candidate genes for leaves senescences and abiotic stress.
Abstract: Leaf senescence is defined as a deterioration process that continues to the final developmental stage of leaf. This process is usually regulated by both external and internal factors. There are about 5356 senescence associated genes belonging to 44 plant species. A great number of these genes were identified in Arabidopsis. Leaf senescence can be regulated by many transcription factors. In this study, nine gene families were selected according to their expression levels during leaf senescence from our laboratory database. Phylogenetic tree was constructed by MEGA6. Cultivated cotton CCRI-10 seeds were sown in the experimental field of Institute of Cotton Research of CAAS for profiling and leaf development stages analysis. For abiotic (drought and salt) stress and phytohormone (ABA, SA, ET and JA) treatments, CCRI-10 seeds were sown in potting soil at 25 °C in a chamber room. Total RNA was isolated from various samples and the cDNA prepared for qRT-PCR. The comparative CT method was applied to calculate the relative expression levels of genes. For phylogenetic tree, nine cotton genes were divided into two groups, most of homologous genes in previous studies showed roles in phytohormones and abiotic stress. Expression profiling of the nine genes showed different patterns of tissue specific expression. In leaf development stages, majority of cotton genes showed high expression in early and complete senescence stage. Furthermore, most of cotton genes have positive or negative response to phytohormones and abiotic stress. Based on the results of this study, we found four cotton genes CotAD_07559, CotAD_37422, CotAD_21204 and CotAD_54353 as candidate genes for leaves senescence and abiotic stress.

5 citations