scispace - formally typeset
Search or ask a question

Showing papers by "Simon A. Forbes published in 2019"


Journal ArticleDOI
TL;DR: Improvements to the public website and data-download systems and new functionality in COSMIC-3D allows exploration of mutations within three-dimensional protein structures, their protein structural and functional impacts, and implications for druggability.
Abstract: COSMIC, the Catalogue Of Somatic Mutations In Cancer (https://cancer.sanger.ac.uk) is the most detailed and comprehensive resource for exploring the effect of somatic mutations in human cancer. The latest release, COSMIC v86 (August 2018), includes almost 6 million coding mutations across 1.4 million tumour samples, curated from over 26 000 publications. In addition to coding mutations, COSMIC covers all the genetic mechanisms by which somatic mutations promote cancer, including non-coding mutations, gene fusions, copy-number variants and drug-resistance mutations. COSMIC is primarily hand-curated, ensuring quality, accuracy and descriptive data capture. Building on our manual curation processes, we are introducing new initiatives that allow us to prioritize key genes and diseases, and to react more quickly and comprehensively to new findings in the literature. Alongside improvements to the public website and data-download systems, new functionality in COSMIC-3D allows exploration of mutations within three-dimensional protein structures, their protein structural and functional impacts, and implications for druggability. In parallel with COSMIC's deep and broad variant coverage, the Cancer Gene Census (CGC) describes a curated catalogue of genes driving every form of human cancer. Currently describing 719 genes, the CGC has recently introduced functional descriptions of how each gene drives disease, summarized into the 10 cancer Hallmarks.

2,626 citations


Journal ArticleDOI
19 Jul 2019-PLOS ONE
TL;DR: The attempts of protein structure modelling using the authors' pipeline and investigating the effects of mutations using two of their in-house methods (SDM2 and mCSM) and identifying potential driver mutations are discussed, allowing us to begin to understand the effect of mutations not only on protein stability but also on protein-protein, protein-ligand and protein-nucleic acid interactions.
Abstract: Genomics and genome screening are proving central to the study of cancer. However, a good appreciation of the protein structures coded by cancer genes is also invaluable, especially for the understanding of functions, for assessing ligandability of potential targets, and for designing new drugs. To complement the wealth of information on the genetics of cancer in COSMIC, the most comprehensive database for cancer somatic mutations available, structural information obtained experimentally has been brought together recently in COSMIC-3D. Even where structural information is available for a gene in the Cancer Gene Census, a list of genes in COSMIC with substantial evidence supporting their impacts in cancer, this information is quite often for a single domain in a larger protein or for a single protomer in a multiprotein assembly. Here, we show that over 60% of the genes included in the Cancer Gene Census are predicted to possess multiple domains. Many are also multicomponent and membrane-associated molecular assemblies, with mutations recorded in COSMIC affecting such assemblies. However, only 469 of the gene products have a structure represented in the PDB, and of these only 87 structures have 90-100% coverage over the sequence and 69 have less than 10% coverage. As a first step to bridging gaps in our knowledge in the many cases where individual protein structures and domains are lacking, we discuss our attempts of protein structure modelling using our pipeline and investigating the effects of mutations using two of our in-house methods (SDM2 and mCSM) and identifying potential driver mutations. This allows us to begin to understand the effects of mutations not only on protein stability but also on protein-protein, protein-ligand and protein-nucleic acid interactions. In addition, we consider ways to combine the structural information with the wealth of mutation data available in COSMIC. We discuss the impacts of COSMIC missense mutations on protein structure in order to identify and assess the molecular consequences of cancer-driving mutations.

9 citations