scispace - formally typeset
Search or ask a question
Author

Sirshendu Hore

Bio: Sirshendu Hore is an academic researcher from Hooghly Engineering and Technology College. The author has contributed to research in topics: Authentication & Artificial neural network. The author has an hindex of 13, co-authored 26 publications receiving 696 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A particle swarm optimization-based approach to train the NN (NN-PSO), capable to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistory reinforced concrete building structure in the future.
Abstract: Faulty structural design may cause multistory reinforced concrete (RC) buildings to collapse suddenly. All attempts are directed to avoid structural failure as it leads to human life danger as well as wasting time and property. Using traditional methods for predicting structural failure of the RC buildings will be time-consuming and complex. Recent research proved the artificial neural network (ANN) potentiality in solving various real-life problems. The traditional learning algorithms suffer from being trapped into local optima with a premature convergence. Thus, it is a challenging task to achieve expected accuracy while using traditional learning algorithms to train ANN. To solve this problem, the present work proposed a particle swarm optimization-based approach to train the NN (NN-PSO). The PSO is employed to find a weight vector with minimum root-mean-square error (RMSE) for the NN. The proposed (NN-PSO) classifier is capable to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. A database of 150 multistoried buildings’ RC structures was employed in the experimental results. The PSO algorithm was involved to select the optimal weights for the NN classifier. Fifteen features have been extracted from the structural design, while nine features have been opted to perform the classification process. Moreover, the NN-PSO model was compared with NN and MLP-FFN (multilayer perceptron feed-forward network) classifier to find its ingenuity. The experimental results established the superiority of the proposed NN-PSO compared to the NN and MLP-FFN classifiers. The NN-PSO achieved 90 % accuracy with 90 % precision, 94.74 % recall and 92.31 % F-Measure.

252 citations

Journal ArticleDOI
TL;DR: A novel real time integrated method to locate the segmented region of interest of an image based on the Region Growing segmentation method along with the thresholding supported image segmentation established that the proposed integrated method outperformed the region growing method in terms of the recall and F-score.
Abstract: Image segmentation is a challenging process in numerous applications. Region growing is one of the segmentation techniques as a basis for the Seeded Region Growing method. A novel real time integrated method was developed in the current work to locate the segmented region of interest of an image based on the Region Growing segmentation method along with the thresholding supported image segmentation. Through the proposed work, a homogeneity based on pixel intensity was suggested as well as the threshold value can be decided via a variety of schemes such as manual selection, Iterative method, Otsu’s method, local thresholding to obtain the best possible threshold. The experimental results were performed on different images obtained from an Alpert dataset. A comparative study was arried out with the human segmented image, threshold based region growing, and the proposed integrated method. The results established that the proposed integrated method outperformed the region growing method in terms of the recall and F-score. Although, it had comparable recall values with that gained by the human segmented images. It was noted that as the image under test had a dark background with the brighter object, thus the proposed method provided the superior recall value compared to the other methods.

102 citations

Book ChapterDOI
TL;DR: In this paper, three novel methods were reported to solve the problem of recognition of Indian sign language gestures effectively by combining Neural Network (NN) with Genetic Algorithm (GA), Evolutionary algorithm (EA) and Particle Swarm Optimization (PSO) separately to attain novel NN-GA, NN -EA and NNPSO methods; respectively.
Abstract: Recognition of sign languages has gained reasonable interest by the researchers in the last decade. An accurate sign language recognition system can facilitate more accurate communication of deaf and dumb people. The wide variety of Indian Sign Language (ISL) led to more challenging learning process. In the current work, three novel methods was reported to solve the problem of recognition of ISL gestures effectively by combining Neural Network (NN) with Genetic Algorithm (GA), Evolutionary algorithm (EA) and Particle Swarm Optimization (PSO) separately to attain novel NN-GA, NN-EA and NN-PSO methods; respectively. The input weight vector to the NN has been optimized gradually to achieve minimum error. The proposed methods performance was compared to NN and the Multilayer Perceptron Feed-Forward Network (MLP-FFN) classifiers. Several performance metrics such as the accuracy, precision, recall, F-measure and kappa statistic were calculated. The experimental results established that the proposed algorithm achieved considerable improvement over the performance of existing works in order to recognize ISL gestures. The NN-PSO outperformed the other approaches with 99.96 accuracy, 99.98 precision, 98.29 recall, 99.63 F-Measure and 0.9956 Kappa Statistic.

66 citations

Book ChapterDOI
TL;DR: A novel application of Particle Swarm Optimization (PSO) trained Artificial Neural Network (ANN) has been employed to separate the patients having Dengue fevers from those who are recovering from it or do not have DF.
Abstract: A mosquito borne pathogen called Dengue virus (DENV) has been emerged as one of the most fatal threats in the recent time. Infections can be in two main forms, namely the DF (Dengue Fever), and DHF (Dengue Hemorrhagic Fever). An efficient detection method for both fever types turns out to be a significant task. Thus, in the present work, a novel application of Particle Swarm Optimization (PSO) trained Artificial Neural Network (ANN) has been employed to separate the patients having Dengue fevers from those who are recovering from it or do not have DF. The ANN’s input weight vector are optimized using PSO to achieve the expected accuracy and to avoid premature convergence toward the local optima. Therefore, a gene expression data (GDS5093 dataset) available publicly is used. The dataset contains gene expression data for DF, DHF, convalescent and healthy control patients of total 56 subjects. Greedy forward selection method has been applied to select most promising genes to identify the DF, DHF and normal (either convalescent or healthy controlled) patients. The proposed system performance was compared to the multilayer perceptron feed-forward neural network (MLP-FFN) classifier. Results proved the dominance of the proposed method with achieved accuracy of 90.91 %.

56 citations

Book ChapterDOI
01 Jan 2016
TL;DR: The authors have proposed a GA trained Neural Network classifier to tackle the task of classify tree species and one mixed forest class using geographically weighted variables calculated for Cryptomeria japonica and Chamaecyparis obtusa.
Abstract: Recent researches have used geographically weighted variables calculated for two tree species, Cryptomeria japonica (Sugi, or Japanese Cedar) and Chamaecyparis obtusa (Hinoki, or Japanese Cypress) to classify the two species and one mixed forest class. In machine learning context it has been found to be difficult to predict that a pixel belongs to a specific class in a heterogeneous landscape image, especially in forest images, as ground features of nearly located pixel of different classes have very similar spectral characteristics. In the present work the authors have proposed a GA trained Neural Network classifier to tackle the task. The local search based traditional weight optimization algorithms may get trapped in local optima and may be poor in training the network. NN trained with GA (NN-GA) overcomes the problem by gradually optimizing the input weight vector of the NN. The performance of NN-GA has been compared with NN, SVM and Random Forest classifiers in terms of performance measures like accuracy, precision, recall, F-Measure and Kappa Statistic. The results have been found to be satisfactory and a reasonable improvement has been made over the existing performances in the literature by using NN-GA.

48 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 2018
TL;DR: The qualitative and quantitative results prove that the proposed WOA-based trainer is able to outperform the current algorithms on the majority of datasets in terms of both local optima avoidance and convergence speed.
Abstract: The learning process of artificial neural networks is considered as one of the most difficult challenges in machine learning and has attracted many researchers recently. The main difficulty of training a neural network is the nonlinear nature and the unknown best set of main controlling parameters (weights and biases). The main disadvantages of the conventional training algorithms are local optima stagnation and slow convergence speed. This makes stochastic optimization algorithm reliable alternative to alleviate these drawbacks. This work proposes a new training algorithm based on the recently proposed whale optimization algorithm (WOA). It has been proved that this algorithm is able to solve a wide range of optimization problems and outperform the current algorithms. This motivated our attempts to benchmark its performance in training feedforward neural networks. For the first time in the literature, a set of 20 datasets with different levels of difficulty are chosen to test the proposed WOA-based trainer. The results are verified by comparisons with back-propagation algorithm and six evolutionary techniques. The qualitative and quantitative results prove that the proposed trainer is able to outperform the current algorithms on the majority of datasets in terms of both local optima avoidance and convergence speed.

556 citations

Journal ArticleDOI
TL;DR: Techniques concerning applications of the noted AI methods in structural engineering developed over the last decade are summarized.

435 citations

Journal ArticleDOI
TL;DR: This study attempts to provide a comprehensive review of the fundamental processes required for change detection with a brief account of the main techniques of change detection and discusses the need for development of enhanced change detection methods.
Abstract: Change detection captures the spatial changes from multi temporal satellite images due to manmade or natural phenomenon. It is of great importance in remote sensing, monitoring environmental changes and land use –land cover change detection. Remote sensing satellites acquire satellite images at varying resolutions and use these for change detection. This paper briefly analyses various change detection methods and the challenges and issues faced as part of change detection. Over the years, a wide range of methods have been developed for analyzing remote sensing data and newer methods are still being developed. Timely and accurate change detection of Earth’s surface features provides the basis for evaluating the relationships and interactions between human and natural phenomena for the better management of resources. In general, change detection applies multi-temporal datasets to quantitatively analyse the temporal effects of the phenomenon. As such, this study attempts to provide a comprehensive review of the fundamental processes required for change detection. The study also gives a brief account of the main techniques of change detection and discusses the need for development of enhanced change detection methods.

196 citations

Journal ArticleDOI
TL;DR: A new productivity prediction model of active solar still was developed depending on improving the performance of the traditional artificial neural networks using Harris Hawks Optimizer, which had the best accuracy in predicting the solar still yield compared with the real experimental results.

163 citations