Author
Tardi Tjahjadi
Other affiliations: Daresbury Laboratory
Bio: Tardi Tjahjadi is an academic researcher from University of Warwick. The author has contributed to research in topics: Computer science & Artificial intelligence. The author has an hindex of 22, co-authored 59 publications receiving 1720 citations. Previous affiliations of Tardi Tjahjadi include Daresbury Laboratory.
Papers published on a yearly basis
Papers
More filters
TL;DR: An algorithm that enhances the contrast of an input image using interpixel contextual information and produces better or comparable enhanced images than four state-of-the-art algorithms is proposed.
Abstract: This paper proposes an algorithm that enhances the contrast of an input image using interpixel contextual information. The algorithm uses a 2-D histogram of the input image constructed using a mutual relationship between each pixel and its neighboring pixels. A smooth 2-D target histogram is obtained by minimizing the sum of Frobenius norms of the differences from the input histogram and the uniformly distributed histogram. The enhancement is achieved by mapping the diagonal elements of the input histogram to the diagonal elements of the target histogram. Experimental results show that the algorithm produces better or comparable enhanced images than four state-of-the-art algorithms.
383 citations
TL;DR: An adaptive image equalization algorithm that automatically enhances the contrast in an input image that is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.
Abstract: In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.
213 citations
TL;DR: Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods.
Abstract: This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods.
104 citations
TL;DR: A two-phase view-invariant multiscale gait recognition method which is robust to variation in clothing and presence of a carried item and a weighted random subspace learning based classification is used to exploit the high dimensionality of the feature space for improved identification.
Abstract: The paper proposes a two-phase view-invariant multiscale gait recognition method (VI-MGR) which is robust to variation in clothing and presence of a carried item. In phase 1, VI-MGR uses the entropy of the limb region of a gait energy image (GEI) to determine the matching gallery view of the probe using 2-dimensional principal component analysis and Euclidean distance classifier. In phase 2, the probe subject is compared with the matching view of the gallery subjects using multiscale shape analysis. In this phase, VI-MGR applies Gaussian filter to a GEI to generate a multiscale gait image for gradually highlighting the subject?s inner shape characteristics to achieve insensitiveness to boundary shape alterations due to carrying conditions and clothing variation. A weighted random subspace learning based classification is used to exploit the high dimensionality of the feature space for improved identification by avoiding overlearning. Experimental analyses on public datasets demonstrate the efficacy of VI-MGR. HighlightsThe paper proposes a two-phase view-invariant multiscale gait recognition method (VI-MGR).VI-MGR is also robust to clothing variation and presence of a carried item.Phase 1 determines the matching gallery view of the probe using entropy.Phase 2 performs multiscale shape analysis using the Gaussian filter.A subject is classified using weighted random subspace learning to avoid overfitting.
82 citations
TL;DR: A multiscale texture classifier that exploits the Gabor-like properties of the dual-tree complex wavelet transform, shift invariance and six directional sub bands at each scale, and uses a feature vector comprising of a variance and an entropy at different scales of each of the directional subbands.
Abstract: This paper presents a multiscale texture classifier that exploits the Gabor-like properties of the dual-tree complex wavelet transform, shift invariance and six directional subbands at each scale, and uses a feature vector comprising of a variance and an entropy at different scales of each of the directional subbands. Experimental results demonstrate its robustness against noise and a higher classification accuracy than a discrete wavelet transform based classifier.
78 citations
Cited by
More filters
Journal Article•
28,685 citations
01 Jan 2016
TL;DR: Biomechanics and motor control of human movement is downloaded so that people can enjoy a good book with a cup of tea in the afternoon instead of juggling with some malicious virus inside their laptop.
Abstract: Thank you very much for downloading biomechanics and motor control of human movement. Maybe you have knowledge that, people have search hundreds times for their favorite books like this biomechanics and motor control of human movement, but end up in infectious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they juggled with some malicious virus inside their laptop.
1,689 citations
TL;DR: Computer and Robot Vision Vol.
Abstract: Computer and Robot Vision Vol. 1, by R.M. Haralick and Linda G. Shapiro, Addison-Wesley, 1992, ISBN 0-201-10887-1.
1,426 citations
TL;DR: Experiments on a number of challenging low-light images are present to reveal the efficacy of the proposed LIME and show its superiority over several state-of-the-arts in terms of enhancement quality and efficiency.
Abstract: When one captures images in low-light conditions, the images often suffer from low visibility. Besides degrading the visual aesthetics of images, this poor quality may also significantly degenerate the performance of many computer vision and multimedia algorithms that are primarily designed for high-quality inputs. In this paper, we propose a simple yet effective low-light image enhancement (LIME) method. More concretely, the illumination of each pixel is first estimated individually by finding the maximum value in R, G, and B channels. Furthermore, we refine the initial illumination map by imposing a structure prior on it, as the final illumination map. Having the well-constructed illumination map, the enhancement can be achieved accordingly. Experiments on a number of challenging low-light images are present to reveal the efficacy of our LIME and show its superiority over several state-of-the-arts in terms of enhancement quality and efficiency.
1,364 citations
TL;DR: This paper reviews ultrasound segmentation methods, in a broad sense, focusing on techniques developed for medical B-mode ultrasound images, and presents a classification of methodology in terms of use of prior information.
Abstract: This paper reviews ultrasound segmentation methods, in a broad sense, focusing on techniques developed for medical B-mode ultrasound images. First, we present a review of articles by clinical application to highlight the approaches that have been investigated and degree of validation that has been done in different clinical domains. Then, we present a classification of methodology in terms of use of prior information. We conclude by selecting ten papers which have presented original ideas that have demonstrated particular clinical usefulness or potential specific to the ultrasound segmentation problem
1,150 citations