scispace - formally typeset
Search or ask a question
Author

Ted Belytschko

Bio: Ted Belytschko is an academic researcher from Northwestern University. The author has contributed to research in topics: Finite element method & Extended finite element method. The author has an hindex of 134, co-authored 547 publications receiving 81345 citations. Previous affiliations of Ted Belytschko include University of Illinois at Chicago & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method.
Abstract: SUMMARY An improvement of a new technique for modelling cracks in the nite element framework is presented. A standard displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright ? 1999 John Wiley & Sons, Ltd.

5,815 citations

Journal ArticleDOI
TL;DR: In this article, an element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems, where moving least-squares interpolants are used to construct the trial and test functions for the variational principle.
Abstract: An element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems. In this method, moving least-squares interpolants are used to construct the trial and test functions for the variational principle (weak form); the dependent variable and its gradient are continuous in the entire domain. In contrast to an earlier formulation by Nayroles and coworkers, certain key differences are introduced in the implementation to increase its accuracy. The numerical examples in this paper show that with these modifications, the method does not exhibit any volumetric locking, the rate of convergence can exceed that of finite elements significantly and a high resolution of localized steep gradients can be achieved. The moving least-squares interpolants and the choices of the weight function are also discussed in this paper.

5,324 citations

Journal ArticleDOI
TL;DR: In this article, a minimal remeshing finite element method for crack growth is presented, where Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack.
Abstract: A minimal remeshing finite element method for crack growth is presented. Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack. This method allows the crack to be arbitrarily aligned within the mesh. For severely curved cracks, remeshing may be needed but only away from the crack tip where remeshing is much easier. Results are presented for a wide range of two-dimensional crack problems showing excellent accuracy. Copyright © 1999 John Wiley & Sons, Ltd.

4,185 citations

Book
12 Sep 2000
TL;DR: In this paper, the authors present a list of boxes for Lagrangian and Eulerian Finite Elements in One Dimension (LDF) in one dimension, including Beams and Shells.
Abstract: Preface. List of Boxes. Introduction. Lagrangian and Eulerian Finite Elements in One Dimension. Continuum Mechanics. Lagrangian Meshes. Constitutive Models Solution Methods and Stability. Arbitrary Lagrangian Eulerian Formulations. Element Technology. Beams and Shells. Contact--Impact. Appendix 1: Voigt Notation. Appendix 2: Norms. Appendix 3: Element Shape Functions. Glossary. References. Index.

3,928 citations

Journal ArticleDOI
Ted Belytschko1, Y. Krongauz1, D. Organ1, Mark Fleming1, Petr Krysl1 
TL;DR: Meshless approximations based on moving least-squares, kernels, and partitions of unity are examined and it is shown that the three methods are in most cases identical except for the important fact that partitions ofunity enable p-adaptivity to be achieved.

3,082 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling framework for estimating Output from Computer Experiments-Predicting Output from Training Data and Criteria Based Designs for computer Experiments.
Abstract: Many scientific phenomena are now investigated by complex computer models or codes A computer experiment is a number of runs of the code with various inputs A feature of many computer experiments is that the output is deterministic--rerunning the code with the same inputs gives identical observations Often, the codes are computationally expensive to run, and a common objective of an experiment is to fit a cheaper predictor of the output to the data Our approach is to model the deterministic output as the realization of a stochastic process, thereby providing a statistical basis for designing experiments (choosing the inputs) for efficient prediction With this model, estimates of uncertainty of predictions are also available Recent work in this area is reviewed, a number of applications are discussed, and we demonstrate our methodology with an example

6,583 citations

Journal ArticleDOI
TL;DR: In this article, a displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method.
Abstract: SUMMARY An improvement of a new technique for modelling cracks in the nite element framework is presented. A standard displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright ? 1999 John Wiley & Sons, Ltd.

5,815 citations

Journal ArticleDOI
TL;DR: In this article, an element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems, where moving least-squares interpolants are used to construct the trial and test functions for the variational principle.
Abstract: An element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems. In this method, moving least-squares interpolants are used to construct the trial and test functions for the variational principle (weak form); the dependent variable and its gradient are continuous in the entire domain. In contrast to an earlier formulation by Nayroles and coworkers, certain key differences are introduced in the implementation to increase its accuracy. The numerical examples in this paper show that with these modifications, the method does not exhibit any volumetric locking, the rate of convergence can exceed that of finite elements significantly and a high resolution of localized steep gradients can be achieved. The moving least-squares interpolants and the choices of the weight function are also discussed in this paper.

5,324 citations