scispace - formally typeset
Search or ask a question

Showing papers by "Themistoklis Charalambous published in 2023"


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a state-decomposition-based privacy-preserving finite-time push-sum (PrFTPS) algorithm without any global information, such as network size or graph diameter.
Abstract: This paper addresses the problem of distributed optimization, where a network of agents represented as a directed graph (digraph) aims to collaboratively minimize the sum of their individual cost functions. Existing approaches for distributed optimization over digraphs, such as Push-Pull, require agents to exchange explicit state values with their neighbors in order to reach an optimal solution. However, this can result in the disclosure of sensitive and private information. To overcome this issue, we propose a state-decomposition-based privacy-preserving finite-time push-sum (PrFTPS) algorithm without any global information, such as network size or graph diameter. Then, based on PrFTPS, we design a gradient descent algorithm (PrFTPS-GD) to solve the distributed optimization problem. It is proved that under PrFTPS-GD, the privacy of each agent is preserved and the linear convergence rate related to the optimization iteration number is achieved. Finally, numerical simulations are provided to illustrate the effectiveness of the proposed approach.

Journal ArticleDOI
01 Apr 2023
TL;DR: In this article , the authors considered the case of heterogeneous platoons under the MPF topology with the use of the combination of sensors and wireless communications for receiving information.
Abstract: The multiple-predecessor following (MPF) topology is used in vehicle platoons to make it robustly string stable and reduce the minimum employable time headway. It has been demonstrated that communication imperfections such as time delays coming from wireless communications can affect string stability as well as the minimum time headway required to guarantee string stability. Specifically, it was shown that the larger the time delay, the longer the minimum time headway will be. However, by utilizing on-board vehicle sensors, such as radar, lidar and cameras, the distance and speed of nearby vehicles can be measured almost instantaneously, i.e., with almost no delay. Another effective parameter on string stability and minimum time headway is the heterogeneity of the vehicles. Due to the immense complexity of the MPF topology, string stability analysis of this topology in literature has been confined to homogeneous platoons. In this paper, we consider the case of heterogeneous platoons under the MPF topology with the use of the combination of sensors and wireless communications for receiving information. Following that, we find conditions to guarantee the internal and string stability for the heterogeneous case and propose the minimum time headway required to guarantee string stability. Finally, we provide a table, in which we propose the minimum time headway for two other wireless communication scenarios as well: (i) having no communication delay and (ii) having fully-delayed information, i.e., all information, whether it comes from the ego vehicle or its predecessors, is delayed. In addition to exploring the analysis of string stability for the vehicles with more possible connections (vehicles after the $r^{th}$ vehicle, when information from $r$ immediate vehicles is used), we study the string stability conditions (with which we aim at avoiding collisions) and find the minimum time headway for the first few vehicles (vehicle $r$ and all its predecessors). Numerical results clearly show the effectiveness of the proposed lower bounds.

Journal ArticleDOI
TL;DR: In this article , a distributed channel access problem for a system consisting of multiple control subsystems that close their loop over a shared wireless network with multiple channels subject to Markovian packet dropouts is formulated as a Markov decision process.
Abstract: We consider the distributed channel access problem for a system consisting of multiple control subsystems that close their loop over a shared wireless network with multiple channels subject to Markovian packet dropouts. Provided that an acknowledgement/negative-acknowledgement feedback mechanism is in place, we show that this problem can be formulated as a Markov decision process. We then transform this problem to a form that enables distributed control-aware channel access. More specifically, we show that the control objective can be minimized without requiring information exchange between subsystems as long as the channel parameters are known. The objective is attained by adopting a priority-based deterministic channel access method and the stability of the system under the resulting scheme is analyzed. Next, we consider a practical scenario in which the channel parameters are unknown and adopt a learning method based on Bayesian inference which is compatible with distributed implementation. We propose a heuristic posterior sampling algorithm which is shown to significantly improve performance via simulations.

Journal ArticleDOI
TL;DR: In this article , a multisensor fusion framework for the onboard real-time navigation of a quadrotor in an indoor environment is presented, which integrates sensor readings from an Inertial Measurement Unit (IMU), a camera-based object detection algorithm, and an UWB localisation system.
Abstract: We present a multisensor fusion framework for the onboard real-time navigation of a quadrotor in an indoor environment. The framework integrates sensor readings from an Inertial Measurement Unit (IMU), a camera-based object detection algorithm, and an Ultra-WideBand (UWB) localisation system. Often the sensor readings are not always readily available, leading to inaccurate pose estimation and hence poor navigation performance. To effectively handle and fuse sensor readings, and accurately estimate the pose of the quadrotor for tracking a predefined trajectory, we design a Maximum Correntropy Criterion Kalman Filter (MCC-KF) that can manage intermittent observations. The MCC-KF is designed to improve the performance of the estimation process when is done with a Kalman Filter (KF), since KFs are likely to degrade dramatically in practical scenarios in which noise is non-Gaussian (especially when the noise is heavy-tailed). To evaluate the performance of the MCC-KF, we compare it with a previously designed Kalman filter by the authors. Through this comparison, we aim to demonstrate the effectiveness of the MCC-KF in handling indoor navigation missions. The simulation results show that our presented framework offers low positioning errors, while effectively handling intermittent sensor measurements.

Journal ArticleDOI
TL;DR: In this article , the average degree and the size of a given network in a distributed fashion and under quantized communication are computed in the form of a fraction involving an integer numerator and an integer denominator.