scispace - formally typeset
T

Tobias J. Kippenberg

Researcher at École Polytechnique Fédérale de Lausanne

Publications -  768
Citations -  56125

Tobias J. Kippenberg is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Frequency comb & Photonics. The author has an hindex of 96, co-authored 694 publications receiving 45628 citations. Previous affiliations of Tobias J. Kippenberg include École Normale Supérieure & California Institute of Technology.

Papers
More filters
Journal ArticleDOI

Cavity Optomechanics

TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Journal ArticleDOI

Cavity Opto-Mechanics

TL;DR: In this article, the consequences of back-action of light confined in whispering-gallery dielectric micro-cavities, and presents a unified treatment of its two manifestations: namely the parametric instability (mechanical amplification and oscillation) and radiation pressure backaction cooling.
Journal ArticleDOI

Ultra-high-Q toroid microcavities on a chip

TL;DR: This work demonstrates a process for producing silica toroid-shaped microresonators-on-a-chip with Q factors in excess of 100 million using a combination of lithography, dry etching and a selective reflow process, representing an improvement of nearly four orders of magnitude over previous chip-based resonators.
Journal ArticleDOI

Optical frequency comb generation from a monolithic microresonator

TL;DR: This work reports a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity.
Journal ArticleDOI

Cavity Optomechanics: Back-Action at the Mesoscale

TL;DR: Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena.