scispace - formally typeset
Search or ask a question

Showing papers by "Tongli Wang published in 2006"


Journal ArticleDOI
01 Nov 2006-Ecology
TL;DR: A new ecosystem-based climate envelope modeling approach was applied to assess potential climate change impacts on forest communities and tree species, and local predictions of changes to tree species frequencies were generated as a basis for systematic surveys of biological response to climate change.
Abstract: A new ecosystem-based climate envelope modeling approach was applied to assess potential climate change impacts on forest communities and tree species. Four orthogonal canonical discriminant functions were used to describe the realized climate space for British Columbia's ecosystems and to model portions of the realized niche space for tree species under current and predicted future climates. This conceptually simple model is capable of predicting species ranges at high spatial resolutions far beyond the study area, including outlying populations and southern range limits for many species. We analyzed how the realized climate space of current ecosystems changes in extent, elevation, and spatial distribution under climate change scenarios and evaluated the implications for potential tree species habitat. Tree species with their northern range limit in British Columbia gain potential habitat at a pace of at least 100 km per decade, common hardwoods appear to be generally unaffected by climate change, and some of the most important conifer species in British Columbia are expected to lose a large portion of their suitable habitat. The extent of spatial redistribution of realized climate space for ecosystems is considerable, with currently important sub-boreal and montane climate regions rapidly disappearing. Local predictions of changes to tree species frequencies were generated as a basis for systematic surveys of biological response to climate change.

557 citations


Journal ArticleDOI
TL;DR: In this article, a methodology to generate scalefree climate data through the combination of interpolation techniques and elevation adjustments is presented, which is applied to monthly temperature and precipitation normals for 1961-90 produced by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) for British Columbia, Yukon Territories, the Alaska Panhandle, and parts of Alberta and the United States.
Abstract: Applying climate data in resource management requires matching the spatial scale of the climate and resource databases. Interpolating climate data in mountainous regions is difficult. In this study, we present methodology to generate scalefree climate data through the combination of interpolation techniques and elevation adjustments. We apply it to monthly temperature and precipitation normals for 1961–90 produced by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) for British Columbia, Yukon Territories, the Alaska Panhandle, and parts of Alberta and the United States. Equations were developed to calculate biologically relevant climate variables including various degree-days, number of frost-free days, frost-free period, and snowfall from monthly temperature and precipitation data. Estimates of climate variables were validated using an independent dataset from weather stations that were not included in the development of the model. Weather station records generally agreed well with estimated climate variables and showed significant improvements over original PRISM climate data. A stand-alone MS Windows application was developed to perform all calculations and to integrate future climate predictions from various global circulation models. We demonstrate the use of this application by showing how climate change may affect lodgepole pine seed planning zones for reforestation in British Columbia. Copyright  2006 Royal Meteorological Society.

344 citations


Journal ArticleDOI
TL;DR: In this paper, a new local climate model for lodgepole pine (Pinus contorta Dougl. ex loud) populations in British Columbia was proposed and compared to the existing growth response functions.
Abstract: Although growth response functions have previously been developed for lodgepole pine (Pinus contorta Dougl. ex Loud.) populations in British Columbia, new analyses were conducted: (1) to demonstrate the merit of a new local climate model in genecological analysis; (2) to highlight new methods for deriving response functions; and (3) to evaluate the impacts of management options for existing geographically defined seed planning units (SPUs) for reforestation. Results of this study suggest that new methods for anchoring population response functions, and a multivariate approach for incorporating climate variables into a single model, considerably improve the reliability of these functions. These functions identified a small number of populations in central areas of the species distribution with greater growth potential over a wide range of mean annual temperature (MAT). Average productivity of lodgepole pine is predicted to increase (up to 7%) if moderate warming (∼2°C MAT) occurs in the next few decades as predicted, although productivity would substantially decline in some SPUs in southern BC. Severe global warming (>3°C MAT) would result in either a drastic decline in productivity or local populations being extirpated in southern SPUs. New deployment strategies using the best seed sources for future reforestation may not only be able to mitigate the negative impact of global warming, but may even be able to increase productivity in some areas.

239 citations