scispace - formally typeset
Search or ask a question

Showing papers by "Toshinobu Tokumoto published in 1998"


Journal ArticleDOI
TL;DR: The cloning, sequencing and expression analysis of Carassius auratus, α2_ca, which encodes one of the proteasome α subunits from goldfish ovary was presented, and it was shown that protein content was different from mRNA expression levels.
Abstract: Proteasomes are large, multisubunit particles that act as the proteolytic machinery for most regulated intracellular protein breakdown in eukaryotic cells. The core proteinase of this complex, the 20S proteasome, is comprised of four stacked rings with seven subunits each. The outer two rings are made up of seven, distinct α-type subunits, while the two inner rings are composed of seven, different β-type subunits. Here we present the cloning, sequencing and expression analysis of Carassius auratus, α2_ca, which encodes one of the proteasome α subunits from goldfish ovary. The cloned cDNA is 838 bp long and encodes 234 amino acids. The deduced amino acid sequence is highly homologous to α2 subunits from other vertebrates. The expression of mRNA for α2_ca occurs at very high levels in ovary and muscle and moderately high levels in testis, brain and gill. It was also shown that protein content was different from mRNA expression levels.

11 citations


Journal ArticleDOI
TL;DR: Results suggest that the formation of the enzyme-substrate complex in the trypsin-like reaction induces a conformational change in the enzyme which makes the SDS activator site(s) in an occluded form, reducing the rates of SDS binding and dissociation.
Abstract: The 20S proteasome of eukaryotic cells has at least three distinct peptidase activities (trypsin-like, chymotrypsin-like and peptidylglutamylpeptide (PGP) hydrolase activities). These peptidases are latent and require appropriate activators. SDS has been widely used as an activator of these peptidases, but the mechanism of its activation remains unresolved. In this study, we investigated the kinetics of the SDS-activated hydrolysis of the above three types of peptidase of the 20S proteasome purified from Xenopus oocytes. When the reaction was started by simultaneous adding both SDS and substrate, maximal rates of hydrolysis were reached after appreciable lag phases with the trypsin-type substrate [t-butyloxycarbonylLeu-Arg-Arg-4-methylcoumaryl-7-amide (Boc-LRR-MCA)], but no such lag phases were observed with the chymotrypsin-type and PGP hydrolase-type substrates [succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide (Suc-LLVY-MCA), and benzyloxycarbonyl-Leu-Leu-Glu-2-naphthylamide (Cbz-LLE-2NA), respectively]. Similarly, changes in the hydrolysis rate to a reduced level upon dilution of SDS occurred after an appreciable lag phase again in the trypsin-like peptidase, but not in the other types. The lag phase characteristic of the trypsin-like peptidase was dependent on the substrate concentration. Thus, the lag phase was less discernible at very low concentrations of the substrate (e.g. at concentrations in the order of 1/100 of the Km value), but became more conspicuous with the increases in the substrate concentration. This lag phase also vanished upon preincubation of the activator (SDS) for a short period of 5 sec. These results suggest that the formation of the enzyme-substrate complex in the trypsin-like reaction induces a conformational change in the enzyme which makes the SDS activator site(s) in an occluded form, reducing the rates of SDS binding and dissociation.

4 citations


Journal ArticleDOI
TL;DR: It is shown that an increase of the fatty acid concentration produces activation of chymotrypsin-type and PGP hydrolase-type peptidase activities in a biphasic fashion: no effect until the threshold concentration and then a sharp activation, and after saturation of this class it permits more fatty acid to bind to another class of sites involved in the activation.
Abstract: The 20S proteasome purified from animal cells has various latent peptidase activities. Fatty acids such as linoleic, linolenic and oleic acids strongly activate both the chymotrypsin-type and peptidylglutamylpeptide (PGP) hydrolase-type activities, but have been reported to have little activation or inhibition of the trypsin-type activity. We show here that an increase of the fatty acid concentration produces activation of chymotrypsin-type and PGP hydrolase-type in a biphasic fashion: no effect until the threshold concentration and then a sharp activation. In contrast, the trypsin-type activity was markedly inhibited at low concentrations of fatty acid, slightly activated at higher concentrations, and inhibited again at even higher concentrations. The inhibition was removed when the concentration of fatty acid was reduced by dilution after pre-incubation with the fatty acid. As a result, the activation pattern became biphasic, which was identical to that of chymotrypsin-type and PGP hydrolase-ty...

4 citations


Journal ArticleDOI
TL;DR: It is suggested that the trypsin-type substrate produces a conformational change in the enzyme in a concentration-dependent manner which makes the activator sites inaccessible to cardiolipin.
Abstract: The effects of an activator, cardiolipin, on the three peptidase activities of the 20S proteasome of Xenopus oocytes were examined. The trypsin-like activity was activated when the enzyme was treated with cardiolipin before the addition of the substrate, but there was no appreciable activation when cardiolipin was added concomitantly with the substrate. On the other hand, the chymotrypsin-like peptidase and peptidylglutamylpeptide hydrolase (PGPH) were activated regardless of the sequence of addition. When very low concentrations of the substrate (e.g. 0.1-0.5 microM; about 1/100 of the K(m)) were used, cardiolipin strongly activated trypsin-like peptidase by the simultaneous addition but not after substrate addition. These results suggest that the trypsin-type substrate produces a conformational change in the enzyme in a concentration-dependent manner which makes the activator sites inaccessible to cardiolipin.

3 citations


Journal Article
TL;DR: Results showed that cell-free extracts of Xenopus egg possess the ability to cause cell-cycle-dependent changes in zebrafish sperm, implying the possibility of generating transgenic zebra fish in a similar way to transgenic Xenopus.

1 citations