scispace - formally typeset
Search or ask a question

Showing papers by "Valerie T. Eviner published in 2002"


Journal ArticleDOI
TL;DR: TheDirect effect of glomalin was much stronger than the direct effect of AMF hyphae themselves, suggesting that this protein is involved in a very important hypha-mediated mechanism of soil aggregate stabilization, at least for the 1–2-mm size class of aggregates.
Abstract: Soil aggregation and soil structure are fundamental properties of natural and managed ecosystems. However, most of our knowledge on the role of plant species in soil aggregation is derived from work in agroecosystems or with agriculturally important plants. Here we examined the effects of five plant species on soil aggregate water stability. The five species (three grasses, one forb, and a legume) were from the same natural grassland, and were grown in monoculture plots in the field. Our first goal was to test if productivity-related or species-specific factors would prevail in determining soil aggregation. We also tested what the relative importance of the soil protein glomalin (produced by arbuscular mycorrhizal fungi, AMF) in soil aggregation is, compared to other factors, including AMF hyphal and root length and percent plant cover. We found significant differences in soil aggregate water stability (1–2 mm size class) for the five plant species examined, and corresponding differences in plant cover, root weight and length, AMF soil hyphal length, and glomalin concentrations. A structural equation modeling approach (path analysis) was used to distinguish direct from indirect effects of factors on soil aggregation based on covariance structures. Root length, soil glomalin, and percent cover contributed equally strong paths to water-stable aggregation. The direct effect of glomalin was much stronger than the direct effect of AMF hyphae themselves, suggesting that this protein is involved in a very important hypha-mediated mechanism of soil aggregate stabilization, at least for the 1–2-mm size class of aggregates.

556 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of plant species, fertilization and elevated CO2 on water-stable soil aggregation were investigated in outdoor mesocosms for four years, with and without NPK fertilization, at ambient or elevated atmospheric CO2 concentrations.
Abstract: We tested the effects of plant species, fertilization and elevated CO2 on water-stable soil aggregation. Five annual grassland species and a plant community were grown in outdoor mesocosms for 4 years, with and without NPK fertilization, at ambient or elevated atmospheric CO2 concentrations. Aggregate stability (resistance of aggregates to slaking) in the top 0.15 m of soil differed among plant species. However, the more diverse plant community did not enhance aggregate stability relative to most monocultures. Species differences in aggregate stability were positively correlated with soil active bacterial biomass, but did not correlate with root biomass or fungal length. Plant species did not affect aggregate stability lower in the soil profile (0.15–0.45 m), where soil biological activity is generally decreased. Elevated CO2 and NPK fertilization altered many of the factors known to influence aggregation, but did not affect water-stable aggregation at either depth, in any of the plant treatments. These results suggest that global changes will alter soil structure primarily due to shifts in vegetation composition.

49 citations