scispace - formally typeset
Search or ask a question

Showing papers by "Werner Liesack published in 2017"


Journal ArticleDOI
TL;DR: The genome encodes a wide repertoire of carbohydrate-active enzymes (CAZymes) including 44 glycoside hydrolases (GH) and 83 glycosyltransferases (GT) affiliated with 21 and 13 CAZy families, respectively, and the experimentally determined carbohydrate utilization pattern agrees well with the genome-predicted capabilities.
Abstract: The family Isosphaeraceae accommodates stalk-free planctomycetes with spherical cells, which can be assembled in short chains, long filaments, or aggregates. These bacteria inhabit a wide variety of terrestrial environments, among those the recently described Paludisphaera borealis PX4T that was isolated from acidic boreal wetlands. Here, we analyzed its finished genome in comparison to those of three other members of the Isosphaeraceae: Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and the uncharacterized planctomycete strain SH-PL62. The complete genome of Paludisphaera borealis PX4T consists of a 7.5 Mb chromosome and two plasmids, 112 and 43 kb in size. Annotation of the genome sequence revealed 5802 potential protein-coding genes of which 2775 could be functionally assigned. The genes encoding metabolic pathways common for chemo-organotrophic bacteria, such as glycolysis, citrate cycle, pentose-phosphate pathway, and oxidative phosphorylation were identified. Several genes involved in the synthesis of peptidoglycan as well as N-methylated ornithine lipids were present in the genome of P. borealis PX4T. A total of 26 giant genes with a size > 5 kb were detected. The genome encodes a wide repertoire of carbohydrate-active enzymes (CAZymes) including 44 glycoside hydrolases (GH) and 83 glycosyltransferases (GT) affiliated with 21 and 13 CAZy families, respectively. The most-represented families are GH5, GH13, GH57, GT2, GT4, and GT83. The experimentally determined carbohydrate utilization pattern agrees well with the genome-predicted capabilities. The CAZyme repertoire in P. borealis PX4T is highly similar to that in the uncharacterized planctomycete SH-PL62 and S. acidiphila DSM 18658T, but different to that in the thermophile Isosphaera pallida IS1BT. The latter strain has a strongly reduced CAZyme content. In P. borealis PX4T, many of its CAZyme genes are organized in clusters. Contrary to most other members of the order Planctomycetales, all four analyzed Isosphaeraceae planctomycetes have plasmids in numbers varying from one to four. The plasmids from P. borealis PX4T display synteny to plasmids from other family members, providing evidence for their common evolutionary origin.

39 citations


Journal ArticleDOI
TL;DR: Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan) and the competence to metabolize C1 compounds (ribulose monophosphate pathway) and lignin derivatives (dye-decolorizing peroxidases).
Abstract: Acid mine drainage (AMD) and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and targeted metagenomics. The slags still contained high amounts of alum constituents (aluminium, sulfur), which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13]), Actinobacteria (TM214), Alphaproteobacteria (DA111) and Chloroflexi (JG37-AG-4), which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18) by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan) and the competence to metabolize C1 compounds (ribulose monophosphate pathway) and lignin derivatives (dye-decolorizing peroxidases). Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat.

29 citations


Journal ArticleDOI
TL;DR: Apparently, the key taxonomic groups involved in the methanogenic breakdown of plant polymers significantly differ in their ability to cope with severe salt stress, directly linked to differences in their genetic potential and metabolic flexibility to reassign available energy resources for cellular adaptation to salt stress.
Abstract: Soil salinization due to seawater intrusion along coastal areas is an increasing threat to rice cultivation worldwide. While the detrimental impact on rice growth and yield has been thoroughly studied, little is known about how severe salinity affects structure and function of paddy soil microbial communities. Here, we examined their short-term responses to half- and full-strength seawater salinity in controlled laboratory experiments. Slurry microcosms were incubated under anoxic conditions, with rice straw added as carbon source. Stress exposure time was for 2 days after a pre-incubation period of 7 days. Relative to the control, moderate (300 mM NaCl) and high (600 mM NaCl) salt stress suppressed both net consumption of acetate and methane production by 50% and 70%, respectively. Correspondingly, community-wide mRNA expression decreased by 50% to 70%, with significant changes in relative transcript abundance of family-level groups. mRNA turnover was clearly more responsive to salt stress than rRNA dynamics. Among bacteria, Clostridiaceae were most abundant and the only group whose transcriptional activity was strongly stimulated at 600 mM NaCl. In particular, clostridial mRNA involved in transcription/translation, fermentation, uptake and biosynthesis of compatible solutes, and flagellar motility was significantly enriched in response salt stress. None of the other bacterial groups were able to compete at 600 mM NaCl. Their responses to 300 mM NaCl were more diverse. Lachnospiraceae increased, Ruminococcaceae maintained, and Peptococcaceae, Veillonellaceae, and Syntrophomonadaceae decreased in relative mRNA abundance. Among methanogens, Methanosarcinaceae were most dominant. Relative to other family-level groups, salt stress induced a significant enrichment of transcripts related to the CODH/ACS complex, methanogenesis, heat shock, ammonium uptake and thermosomes, but the absolute abundance of methanosarcinal mRNA decreased. Most strikingly, the transcriptional activity of the Methanocellaceae was completely suppressed already at 300 mM NaCl. Apparently, the key taxonomic groups involved in the methanogenic breakdown of plant polymers significantly differ in their ability to cope with severe salt stress. Presumably, this different ability is directly linked to differences in their genetic potential and metabolic flexibility to reassign available energy resources for cellular adaptation to salt stress.

23 citations


Journal ArticleDOI
TL;DR: Strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities, and is placed into the low-salt-tolerance range reported for other Methylocystis species.
Abstract: Soil microorganisms have to rapidly respond to salt-induced osmotic stress. Type II methanotrophs of the genus Methylocystis are widely distributed in upland soils but are known to have a low salt tolerance. Here, we tested the ability of Methylocystis sp. strain SC2 to adapt to increased salinity. When exposed to 0.75% NaCl, methane oxidation was completely inhibited for 2.25 h and fully recovered within 6 h. Growth was inhibited for 23.5 h and then fully recovered. Its transcriptome was profiled after 0 min (control), 45 min (early response), and 14 h (late response) of stress exposure. Physiological and transcriptomic stress responses corresponded well. Salt stress induced the differential expression of 301 genes, with sigma factor σ32 being a major controller of the transcriptional stress response. The transcript levels of nearly all the genes involved in oxidizing CH4 to CO2 remained unaffected, while gene expression involved in energy-yielding reactions (nuoA-N) recovered concomitantly with methane oxidation from salt stress shock. Glutamate acted as an osmoprotectant. Its accumulation in late stress response corresponded to increased production of glutamate dehydrogenase 1. Chromosomal genes whose products (stress-induced protein, DNA-binding protein from starved cells, and CsbD family protein) are known to confer stress tolerance showed increased expression. On plasmid pBSC2-1, genes encoding type IV secretion system and single-strand DNA-binding protein were upregulated in late response, suggesting stress-induced activation of the plasmid-borne conjugation machinery. Collectively, our results show that Methylocystis sp. strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities.IMPORTANCE Besides the oxic interface of methanogenic environments, Methylocystis spp. are widely distributed in upland soils, where they may contribute to the oxidation of atmospheric methane. However, little is known about their ability to cope with changes in soil salinity. Growth and methane oxidation of Methylocystis sp. strain SC2 were not affected by the presence of 0.5% NaCl, while 1% NaCl completely inhibited its activity. This places strain SC2 into the low-salt-tolerance range reported for other Methylocystis species. Our results show that, albeit in a narrow range, strain SC2 is able to respond and adapt to salinity changes. It possesses various stress response mechanisms, which allow resumption of growth within 24 h when exposed to 0.75% NaCl. Presumably, these mechanisms allow Methylocystis spp., such as strain SC2, to thrive in upland soils and to adapt to certain fluctuations in soil salinity.

21 citations