scispace - formally typeset
Search or ask a question

Showing papers by "Ya-Ping Xue published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the effects of the co-addition of fungal agents and biochar on physicochemical properties, odor emissions, microbial community structure, and metabolic functions were investigated during the in-situ treatment of food waste.

1 citations


Journal ArticleDOI
TL;DR: In this article , an aminotransferase-driven whole-cell biocatalytic cascade (E. coli BL21(DE3) was used for the synthesis of PPO from d,l-phosphinothricin.
Abstract: 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.


Journal ArticleDOI
TL;DR: In this paper , a synthetic route for producing 3-amino-2-hydroxy acetophenone (3AHAP) from m-nitroacetophenone using an in-vitro approach was developed.
Abstract: We developed a synthetic route for producing 3‐amino‐2‐hydroxy acetophenone (3AHAP) from m‐nitroacetophenone (3NAP) using an in vitro approach. Various reaction systems were evaluated, and a direct reaction method with crude enzyme and supersaturated substrates for optimal catalytic efficiency was chosen. The reaction system included three enzymes and was enhanced by adjusting enzyme molar ratios and optimizing ribosomal binding sites. We performed substrate docking and alanine scanning to identify key sites in the enzymes nitrobenzene nitroreductase (nbzA) and hydroxylaminobenzene mutase (habA). The optimal mutant was obtained through site‐directed mutagenesis, and incorporated into the reaction system, resulting in increased product yield. After optimization, the yield of 3AHAP increased from 75 mg/L to 580 mg/L within 5 hours, the highest reported yield using biosynthesis. This work provides a promising strategy for the efficient and sustainable production of 3AHAP, which has critical applications in the chemical and pharmaceutical industries.

Journal ArticleDOI
TL;DR: In this article , hyperthermophilic pretreatment (HP) was introduced as a novel approach within thermophilic composting, and its effects on humification process and bacterial community during food waste TC was investigated from multiple perspectives.

Journal ArticleDOI
TL;DR: In this article , the authors compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter and found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli GluDH-FDH, and IPTG is more environmentally friendly.
Abstract: BACKGROUND Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second Escherichia coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U/g and 896.23 U/g, respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U/g and 109.70 U/g, respectively. The 200 mM D-PPT was bio catalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations. This article is protected by copyright. All rights reserved.



Journal ArticleDOI
TL;DR: In this paper , an efficient formate dehydrogenase (FDH)-based cofactor regeneration system is used for biocatalytic processes due to their ready availability, low reduction potential, and production of only benign byproducts.
Abstract: Efficient formate dehydrogenase (FDH)-based cofactor regeneration systems are widely used for biocatalytic processes due to their ready availability, low reduction potential, and production of only benign byproducts. However, FDHs are usually specific to NAD+, and NADPH regeneration with formate is challenging. Herein, an FDH with a preference for NAD+ from Azospirillum palustre (ApFDH) was selected owing to its high activity. By static and dynamic structural analyses, a beneficial substitution, D222Q, was identified for cofactor-preference switching. However, its total activity was substantially decreased by 90% owing to the activity-specificity trade-off. Subsequently, a semirational library was designed and screened, which yielded a variant ApFDHD222Q+A199G+H380S with satisfactory activity and NADP+ specificity. Our analysis of dynamical cross-correlations revealed a substitution combination that brought balance to the dynamical correlation network. This combination successfully overcame the activity-specificity-stability trade-off and resulted in a beneficial outcome. The substitution combination (D222Q-A199G/H380S-C256A/C146S) enabled the simultaneous improvement of activity, specificity, and stability and was successfully applied to other 17 FDHs. Finally, by employing engineered ApFDH, an NADPH regeneration system was developed, optimized, and utilized for the asymmetric biosynthesis of l-phosphinothricin.