scispace - formally typeset
Search or ask a question

Showing papers by "Yufang Jin published in 2012"


Journal ArticleDOI
TL;DR: This paper quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Database.
Abstract: Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Database. We used the MODIS-derived difference Normalized Burn Ratio (dNBR) and initial changes in spring albedo as measures of burn severity. We found that the most severe burns had the greatest reduction in summer MODIS Enhanced Vegetation Index (EVI) in the first year after fire, indicating greater loss of vegetation cover. By 5–8 years after fire, summer EVI for all severity classes had recovered to within 90%–108% of prefire levels. Spring and summer albedo progressively increased during the first 7 years after fire, with more severely burned areas showing considerably larger postfire albedo increases during spring and more rapid increases during summer as compared with moderate- and low-severity burns. After 5–7 years, increases in spring albedo above prefire levels were considerably larger in high-severity burns (0.20 ± 0.06; defined by dNBR percentiles greater than 75%) as compared to changes observed in moderate- (0.16 ± 0.06; for dNBR percentiles between 45% and 75%) or low-severity burns (0.13 ± 0.06; for dNBR percentiles between 20% and 45%). The sensitivity of spring albedo to dNBR was similar in all ecozones and for all vegetation types along gradients of burn severity. These results suggest carbon losses associated with increases in burn severity observed in some areas of boreal forests may be at least partly offset, in terms of climate impacts, by increases in negative forcing associated with changes in surface albedo.

104 citations


Journal ArticleDOI
TL;DR: This paper used satellite observations of surface albedo from 2000-2011 and fire perimeters since 1970 to study post-fire changes in surface net shortwave radiation along a latitudinal transect in central Canada.
Abstract: Understanding how a changing boreal fire regime is likely to influence regional climate requires detailed information about fire effects on the surface radiation budget. We used time series of satellite observations of surface albedo from 2000–2011 and fire perimeters since 1970 to study post-fire changes in surface net shortwave radiation along a latitudinal transect in central Canada. Fire-induced surface shortwave forcing (SSF) integrated over an annual cycle for the first 30 years after fire was similar (−4.1 W m−2 with a 95% confidence interval of −4.5 to −3.7 W m−2) between southern and northern boreal regions. The lack of a latitudinal difference in SSF was caused by counteracting latitudinal trends in seasonal contributions. Spring (March, April, and May) SSF increased with latitude, from −7.2 W m−2 in the south to −10.1 W m−2in the north, primarily because of delayed snow melt, which amplified albedo differences between unburned forests and recovering stands. In contrast, winter incoming solar radiation and summer albedo change decreased from south to north, resulting in a decreasing latitudinal trend in winter and summer SSF. Vegetation recovery was slower in the north, leading to smaller increases in summer albedo during the first decade after fire, and a prolonged phase of elevated spring albedo during the second decade. Our results indicate that fires reduce surface net shortwave radiation considerably for many boreal forest ecosystems in North America, providing further evidence that disturbance-mediated shifts in surface energy exchange need to be considered in efforts to manage these forests for climate change mitigation.

35 citations


Journal ArticleDOI
TL;DR: Remote sensing provides an effective means for evaluating some aspects of the current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential to improve the robustness of the next generation inventory system.
Abstract: Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an effective means for evaluating some aspects of the current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential to improve the robustness of the next generation inventory system.

33 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluate a new approach to estimate regional evapotranspiration (ET) across a montane, Mediterranean climate gradient in the San Jacinto and Santa Rosa Mountains of Southern California.

27 citations