scispace - formally typeset
Search or ask a question
Author

Yuji Zhang

Bio: Yuji Zhang is an academic researcher from University of Maryland, Baltimore. The author has contributed to research in topics: Transcriptome & Prostate cancer. The author has an hindex of 23, co-authored 74 publications receiving 1813 citations. Previous affiliations of Yuji Zhang include University of Washington & University of Arkansas for Medical Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: A model is developed to estimate the statistical power needed to identify differentially expressed genes from RNA-Seq experiments, finding evidence that 91% ± 4% of all annotated genes are sequenced at a frequency of 0.1 times per million bases mapped, regardless of sample source.
Abstract: Background: Given the high technical reproducibility and orders of magnitude greater resolution than microarrays, next-generation sequencing of mRNA (RNA-Seq) is quickly becoming the de facto standard for measuring levels of gene expression in biological experiments. Two important questions must be taken into consideration when designing a particular experiment, namely, 1) how deep does one need to sequence? and, 2) how many biological replicates are necessary to observe a significant change in expression? Results: Based on the gene expression distributions from 127 RNA-Seq experiments, we find evidence that 91% ± 4% of all annotated genes are sequenced at a frequency of 0.1 times per million bases mapped, regardless of sample source. Based on this observation, and combining this information with other parameters such as biological variation and technical variation that we empirically estimate from our large datasets, we developed a model to estimate the statistical power needed to identify diffe...

216 citations

Journal ArticleDOI
Q Li1, Y Yao1, Gabriel Eades1, Zhenqiu Liu1, Yuji Zhang1, Qun Zhou1 
15 May 2014-Oncogene
TL;DR: A model of ERα-negative/basal-like DCIS is examined and restoration of miR-140 via a genetic approach or with the dietary compound sulforaphane decreased SOX9 and ALDH1, and reduced tumor growth in vivo, suggesting that the miR -140 pathway may be a promising target for preventative strategies in patients with basal- like DCIS.
Abstract: The major goal of breast cancer prevention is to reduce the incidence of ductal carcinoma in situ (DCIS), an early stage of breast cancer. However, the biology behind DCIS formation is not well understood. It is suspected that cancer stem cells (CSCs) are already programmed in pre-malignant DCIS lesions and that these tumor-initiating cells may determine the phenotype of DCIS. MicroRNA (miRNA) profiling of paired DCIS tumors revealed that loss of miR-140 is a hallmark of DCIS lesions. Previously, we have found that miR-140 regulates CSCs in luminal subtype invasive ductal carcinoma. Here, we find that miR-140 has a critical role in regulating stem cell signaling in normal breast epithelium and in DCIS. miRNA profiling of normal mammary stem cells and cancer stem-like cells from DCIS tumors revealed that miR-140 is significantly downregulated in cancer stem-like cells compared with normal stem cells, linking miR-140 and dysregulated stem cell circuitry. Furthermore, we found that SOX9 and ALDH1, the most significantly activated stem-cell factors in DCIS stem-like cells, are direct targets of miR-140. Currently, targeted therapies (tamoxifen) are only able to reduce DCIS risk in patients with estrogen receptor α (ERα)-positive disease. We examined a model of ERα-negative/basal-like DCIS and found that restoration of miR-140 via a genetic approach or with the dietary compound sulforaphane decreased SOX9 and ALDH1, and reduced tumor growth in vivo. These results support that a miR-140/ALDH1/SOX9 axis is critical to basal CSC self-renewal and tumor formation in vivo, suggesting that the miR-140 pathway may be a promising target for preventative strategies in patients with basal-like DCIS.

162 citations

Journal ArticleDOI
TL;DR: Wide variation in the expression of the DNA cytosine deaminase APOBEC3B is reported, with elevated expression in the majority of ovarian cancer cell lines and high-grade primary ovarian cancers, identifying a potential role for APOBec3B in serous ovarian cancer genomic instability.
Abstract: Ovarian cancer is a clinically and molecularly heterogeneous disease. The driving forces behind this variability are unknown. Here, we report wide variation in the expression of the DNA cytosine deaminase APOBEC3B, with elevated expression in the majority of ovarian cancer cell lines (three SDs above the mean of normal ovarian surface epithelial cells) and high-grade primary ovarian cancers. APOBEC3B is active in the nucleus of several ovarian cancer cell lines and elicits a biochemical preference for deamination of cytosines in 5'-TC dinucleotides. Importantly, examination of whole-genome sequence from 16 ovarian cancers reveals that APOBEC3B expression correlates with total mutation load as well as elevated levels of transversion mutations. In particular, high APOBEC3B expression correlates with C-to-A and C-to-G transversion mutations within 5'-TC dinucleotide motifs in early-stage high-grade serous ovarian cancer genomes, suggesting that APOBEC3B-catalyzed genomic uracil lesions are further processed by downstream DNA "repair" enzymes including error-prone translesion polymerases. These data identify a potential role for APOBEC3B in serous ovarian cancer genomic instability.

144 citations

Journal Article
TL;DR: It is demonstrated here that CD40 engagement on human lung fibroblasts dramatically increases proinflammatory PGE2 synthesis and is mediated through an induction of cyclooxygenase-2 (Cox-2) since Cox-2-selective inhibitors block the up-regulation.
Abstract: A newly emerging view of fibroblasts is that they are vital for initiating inflammation and respond to and direct the activities of leukocytes. Human fibroblasts can express CD40, an activation Ag the ligand of which is displayed by activated leukocytes. We demonstrate here that CD40 engagement on human lung fibroblasts dramatically increases proinflammatory PGE2 synthesis. This up-regulation is mediated through an induction of cyclooxygenase-2 (Cox-2) since Cox-2-selective inhibitors block the up-regulation. Western and Northern blot analyses demonstrated that Cox-2 protein and mRNA are dramatically increased in fibroblasts following CD40 engagement. We conclude that CD40 is a major pathway in human fibroblasts for the induction of Cox-2. There is intense interest in devising strategies for disruption of the CD40-CD40 ligand system to blunt inflammation. Such an intervention would be expected to attenuate the up-regulation of fibroblast Cox-2 and PGE2 production at the site of tissue injury.

133 citations

Journal ArticleDOI
TL;DR: Definition of the cardiac transcriptome and fetal gene program will facilitate systems biology studies of dilated cardiomyopathy in zebrafish and supports the use of zebra fish as a conserved vertebrate model.
Abstract: Background— Genetic studies of cardiomyopathy and heart failure have limited throughput in mammalian models. Adult zebrafish have been recently pursued as a vertebrate model with higher throughput, but genetic conservation must be tested. Methods and Results— We conducted transcriptome analysis of zebrafish heart and searched for fish homologues of 51 known human dilated cardiomyopathy–associated genes. We also identified genes with high cardiac expression and genes with differential expression between embryonic and adult stages. Among tested genes, 30 had a single zebrafish orthologue, 14 had 2 homologues, and 5 had ≥3 homologues. By analyzing the expression data on the basis of cardiac abundance and enrichment hypotheses, we identified a single zebrafish gene for 14 of 19 multiple-homologue genes and 2 zebrafish homologues of high priority for ACTC1 . Of note, our data suggested vmhc and vmhcl as functional zebrafish orthologues for human genes MYH6 and MYH7 , respectively, which are established molecular markers for cardiac remodeling. Conclusions— Most known genes for human dilated cardiomyopathy have a corresponding zebrafish orthologue, which supports the use of zebrafish as a conserved vertebrate model. Definition of the cardiac transcriptome and fetal gene program will facilitate systems biology studies of dilated cardiomyopathy in zebrafish.

90 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

25 May 2011
TL;DR: A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell.
Abstract: Metastasis, the dissemination and growth of neoplastic cells in an organ distinct from that in which they originated, is the most common cause of death in cancer patients. This is particularly true for pancreatic cancers, where most patients are diagnosed with metastatic disease and few show a sustained response to chemotherapy or radiation therapy. Whether the dismal prognosis of patients with pancreatic cancer compared to patients with other types of cancer is a result of late diagnosis or early dissemination of disease to distant organs is not known. Here we rely on data generated by sequencing the genomes of seven pancreatic cancer metastases to evaluate the clonal relationships among primary and metastatic cancers. We find that clonal populations that give rise to distant metastases are represented within the primary carcinoma, but these clones are genetically evolved from the original parental, non-metastatic clone. Thus, genetic heterogeneity of metastases reflects that within the primary carcinoma. A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell. At least five more years are required for the acquisition of metastatic ability and patients die an average of two years thereafter. These data provide novel insights into the genetic features underlying pancreatic cancer progression and define a broad time window of opportunity for early detection to prevent deaths from metastatic disease.

2,019 citations