scispace - formally typeset
Search or ask a question

Showing papers in "Cancer Research in 2013"


Journal ArticleDOI
TL;DR: A loss-of-function model unravels the active function of MALAT1 as a regulator of gene expression governing hallmarks of lung cancer metastasis with this ncRNA serving as both predictive marker and therapeutic target.
Abstract: The long non-coding RNA MALAT1, also known as MALAT-1 or NEAT2, is a highly conserved nuclear ncRNA and a predictive marker for metastasis development in lung cancer. To uncover its functional importance, we developed a MALAT1 knockout model in human lung tumor cells by genomically integrating RNA destabilizing elements using Zinc Finger Nucleases. The achieved 1000-fold MALAT1 silencing provides a unique loss-of-function model. Proposed mechanisms of action include regulation of splicing or gene expression. In lung cancer, MALAT1 does not alter alternative splicing but actively regulates gene expression including a set of metastasis-associated genes. Consequently, MALAT1-deficient cells are impaired in migration and form fewer tumor nodules in a mouse xenograft. Antisense oligonucleotides blocking MALAT1 prevent metastasis formation after tumor implantation. Thus, targeting MALAT1 with antisense oligonucleotides provides a potential therapeutic approach to prevent lung cancer metastasis with MALAT1 serving as both, predictive marker and therapeutic target. Lastly, regulating gene expression, but not alternative splicing is the critical function of MALAT1 in lung cancer metastasis. In summary, ten years after the discovery of the lncRNA MALAT1 as a biomarker for lung cancer metastasis, our loss-of-function model unravels the active function of MALAT1 as a regulator of gene expression governing hallmarks of lung cancer metastasis.

1,342 citations


Journal ArticleDOI
TL;DR: This report summarizes the workshop discussions on key issues of the EPR effect and major gaps that need to be addressed to effectively advance nanoparticle-based drug delivery.
Abstract: Enhanced permeability of the tumor vasculature allows macromolecules to enter the tumor interstitial space, whereas the suppressed lymphatic filtration allows them to stay there. This phenomenon, enhanced permeability and retention (EPR), has been the basis of nanotechnology platforms to deliver drugs to tumors. However, progress in developing effective drugs using this approach has been hampered by heterogeneity of EPR effect in different tumors and limited experimental data from patients on effectiveness of this mechanism as related to enhanced drug accumulation. This report summarizes the workshop discussions on key issues of the EPR effect and major gaps that need to be addressed to effectively advance nanoparticle-based drug delivery.

1,247 citations


Journal ArticleDOI
TL;DR: Oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis.
Abstract: The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H+ diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal pHe. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter GLUT-1 and the sodium-hydrogen exchanger NHE-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis.

932 citations


Journal ArticleDOI
TL;DR: The current knowledge about the ciRS-7/miR-7 axis in cancer-related pathways is reviewed and possible models explaining the relevance of coexpressing miR- 7 along with a circRNA inhibitor are discussed.
Abstract: MicroRNAs (miRNA) play important roles in fine-tuning gene expression and are often deregulated in cancer. The identification of competing endogenous RNA and circular RNA (circRNA) as important regulators of miRNA activity underscores the increasing complexity of ncRNA-mediated regulatory networks. Particularly, the recently identified circular RNA, ciRS-7, which acts as a designated miR-7 inhibitor/sponge, has conceptually changed the mechanistic understanding of miRNA networks. As miR-7 modulates the expression of several oncogenes, disclosing the regulation of miR-7 activity will likely advance the understanding of various cancer etiologies. Here, we review the current knowledge about the ciRS-7/miR-7 axis in cancer-related pathways and discuss possible models explaining the relevance of coexpressing miR-7 along with a circRNA inhibitor.

818 citations


Journal ArticleDOI
TL;DR: These findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs and improve chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses.
Abstract: Tumor-infiltrating immune cells can promote chemoresistance and metastatic spread in aggressive tumors. Consequently, the type and quality of immune responses present in the neoplastic stroma are highly predictive of patient outcome in several cancer types. In addition to host immune responses, intrinsic tumor cell activities that mimic stem cell properties have been linked to chemoresistance, metastatic dissemination, and the induction of immune suppression. Cancer stem cells are far from a static cell population; rather, their presence seems to be controlled by highly dynamic processes that are dependent on cues from the tumor stroma. However, the impact immune responses have on tumor stem cell differentiation or expansion is not well understood. In this study, we show that targeting tumor-infiltrating macrophages (TAM) and inflammatory monocytes by inhibiting either the myeloid cell receptors colony-stimulating factor-1 receptor (CSF1R) or chemokine (C-C motif) receptor 2 (CCR2) decreases the number of tumor-initiating cells (TIC) in pancreatic tumors. Targeting CCR2 or CSF1R improves chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses. Tumor-educated macrophages also directly enhanced the tumor-initiating capacity of pancreatic tumor cells by activating the transcription factor STAT3, thereby facilitating macrophage-mediated suppression of CD8(+) T lymphocytes. Together, our findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs.

780 citations


Journal ArticleDOI
TL;DR: Together, the results show how HDAC inhibition can epigenetically restore BIM function and death sensitivity of EGFR-TKI in cases of EGfr-mutant NSCLC where resistance to EGF receptor tyrosine kinase inhibitors is associated with a common BIM polymorphism.
Abstract: BIM (BCL2L11) is a BH3-only proapoptotic member of the Bcl-2 protein family. BIM upregulation is required for apoptosis induction by EGF receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKI) in EGFR-mutant forms of non-small cell lung cancer (NSCLC). Notably, a BIM deletion polymorphism occurs naturally in 12.9% of East Asian individuals, impairing the generation of the proapoptotic isoform required for the EGFR-TKIs gefitinib and erlotinib and therefore conferring an inherent drug-resistant phenotype. Indeed, patients with NSCLC, who harbored this host BIM polymorphism, exhibited significantly inferior responses to EGFR-TKI treatment than individuals lacking this polymorphism. In an attempt to correct this response defect in the resistant group, we investigated whether the histone deacetylase (HDAC) inhibitor vorinostat could circumvent EGFR-TKI resistance in EGFR-mutant NSCLC cell lines that also harbored the BIM polymorphism. Consistent with our clinical observations, we found that such cells were much less sensitive to gefitinib-induced apoptosis than EGFR-mutant cells, which did not harbor the polymorphism. Notably, vorinostat increased expression in a dose-dependent manner of the proapoptotic BH3 domain-containing isoform of BIM, which was sufficient to restore gefitinib death sensitivity in the EGFR mutant, EGFR-TKI-resistant cells. In xenograft models, while gefitinib induced marked regression via apoptosis of tumors without the BIM polymorphism, its combination with vorinostat was needed to induce marked regression of tumors with the BIM polymorphism in the same manner. Together, our results show how HDAC inhibition can epigenetically restore BIM function and death sensitivity of EGFR-TKI in cases of EGFR-mutant NSCLC where resistance to EGFR-TKI is associated with a common BIM polymorphism.

695 citations


Journal ArticleDOI
TL;DR: The role of the PD-1:PD-L1 interaction in creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance once tumors are established is supported and a rationale for therapeutic blockade of this pathway is suggested in patients with HPV-HNSCC.
Abstract: Human papillomavirus-associated head and neck squamous cell carcinomas (HPV-HNSCC) originate in the tonsils, the major lymphoid organ that orchestrates immunity to oral infections. Despite its location, the virus escapes immune elimination during malignant transformation and progression. Here, we provide evidence for the role of the PD-1:PD-L1 pathway in HPV-HNSCC immune resistance. We show membranous expression of PD-L1 in the tonsillar crypts, the site of initial HPV infection. In HPV-HNSCCs that are highly infiltrated with lymphocytes, PD-L1 expression on both tumor cells and CD68+ tumor-associated macrophages is geographically localized to sites of lymphocyte fronts, whereas the majority of CD8+ tumor-infiltrating lymphocytes express high levels of PD-1, the inhibitory PD-L1 receptor. Significant levels of mRNA for IFN-γ, a major cytokine inducer of PD-L1 expression, were found in HPV+ PD-L1(+) tumors. Our findings support the role of the PD-1:PD-L1 interaction in creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance once tumors are established and suggest a rationale for therapeutic blockade of this pathway in patients with HPV-HNSCC.

685 citations


Journal ArticleDOI
TL;DR: It is indicated thatPD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effectors T-cell activity, thereby attenuating Treg suppression.
Abstract: Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression.

663 citations


Journal ArticleDOI
TL;DR: This study shows that cells with AR gene rearrangements expressing both full-length and AR-Vs are androgen independent and enzalutamide resistant, but selective knock-down of AR-V expression inhibited androgen-independent growth and restored responsiveness to androgens and antiandrogens.
Abstract: Persistent androgen receptor (AR) transcriptional activity underlies resistance to AR-targeted therapy and progression to lethal castration resistant prostate cancer (CRPC). Recent success in re-targeting persistent AR activity with next-generation androgen/AR axis inhibitors such as enzalutamide (MDV3100) has validated AR as a master regulator during all stages of disease progression. However, resistance to next-generation AR inhibitors limits therapeutic efficacy for many patients. One emerging mechanism of CRPC progression is AR gene rearrangement, promoting synthesis of constitutively-active truncated AR splice variants (AR-Vs) that lack the AR ligand binding domain. In this study, we demonstrate that cells with AR gene rearrangements expressing both full-length and AR-Vs are androgen-independent and enzalutamide-resistant. However, selective knock-down of AR-V expression inhibited androgen-independent growth and restored responsiveness to androgens and antiandrogens. In heterogeneous cell populations, AR gene rearrangements marked individual AR-V-dependent cells that were resistant to enzalutamide. Gene expression profiling following knock-down of full-length AR or AR-Vs demonstrated that AR-Vs drive resistance to AR-targeted therapy by functioning as constitutive and independent effectors of the androgen/AR transcriptional program. Further, mitotic genes deemed previously to be unique AR-V targets were found to be biphasic targets associated with a proliferative level of signaling output from either AR-Vs or androgen-stimulated AR. Overall, these studies highlight AR-Vs as key mediators of persistent AR signaling and resistance to the current arsenal of conventional and next-generation AR-directed therapies, advancing the concept of AR-Vs as therapeutic targets in advanced disease.

622 citations


Journal ArticleDOI
TL;DR: This review examines the development, challenges, and broad use of these attractive preclinical models for tumor graft models, which offer a tool for developing anticancer therapies and personalized medicine for patients with cancer.
Abstract: Tumor graft models (also known as patient-derived xenografts or PDX) are based on the transfer of primary tumors directly from the patient into an immunodeficient mouse. Because PDX mice are derived from human tumors, they offer a tool for developing anticancer therapies and personalized medicine for patients with cancer. In addition, these models can be used to study metastasis and tumor genetic evolution. This review examines the development, challenges, and broad use of these attractive preclinical models.

587 citations


Journal ArticleDOI
TL;DR: These findings prompt a need to revisit the significance of PD-1-infiltrating T cells in cancer, where it is suggested thatPD-1 detection may reflect a previous immune response against tumors that might be reactivated by PD- 1/PD-L1 blockade.
Abstract: Head and neck cancers positive for human papillomavirus (HPV) have a more favorable clinical outcome than HPV-negative cancers, but it is unknown why this is the case. We hypothesized that prognosis was affected by intrinsic features of HPV-infected tumor cells or differences in host immune response. In this study, we focused on a comparison of regulatory Foxp3(+) T cells and programmed death-1 (PD-1)(+) T cells in the microenvironment of tumors that were positive or negative for HPV, in two groups that were matched for various clinical and biologic parameters. HPV-positive head and neck cancers were more heavily infiltrated by regulatory T cells and PD-1(+) T cells and the levels of PD-1(+) cells were positively correlated with a favorable clinical outcome. In explaining this paradoxical result, we showed that these PD-1(+) T cells expressed activation markers and were functional after blockade of the PD-1-PD-L1 axis in vitro. Approximately 50% of PD-1(+) tumor-infiltrating T cells lacked Tim-3 expression and may indeed represent activated T cells. In mice, administration of a cancer vaccine increased PD-1 on T cells with concomitant tumor regression. In this setting, PD-1 blockade synergized with vaccine in eliciting antitumor efficacy. Our findings prompt a need to revisit the significance of PD-1-infiltrating T cells in cancer, where we suggest that PD-1 detection may reflect a previous immune response against tumors that might be reactivated by PD-1/PD-L1 blockade.

Journal ArticleDOI
TL;DR: A novel mechanism of tumor escape by which VEGF-A directly triggers Treg proliferation which is inhibited by VEGf-A/VEGFR-2 blockade and anti-VEGF-A therapies also have immunologic effects that may be used with a therapeutic goal in the future.
Abstract: A central pathway of tumor angiogenesis also has a pivotal role in driving immune escape, illustrating a tight integration of pathways driving malignant progression.

Journal ArticleDOI
Yuhui Huang1, Shom Goel1, Dan G. Duda1, Dai Fukumura1, Rakesh K. Jain1 
TL;DR: The local and systemic effects of VEGF on tumor immunity are discussed and a potentially translatable strategy to re-engineer the tumor-immune microenvironment and improve cancer immunotherapy by using lower "vascular normalizing" doses of antiangiogenic agents is proposed.
Abstract: The recent approval of Provenge has brought new hope for anticancer vaccine therapies. However, the immunosuppressive tumor microenvironment seems to impair the efficacy of vaccine therapies. The abnormal tumor vasculature creates a hypoxic microenvironment that polarizes inflammatory cells toward immune suppression. Moreover, tumors systemically alter immune cells' proliferation, differentiation, and function via secretion of growth factors and cytokines. For example, VEGF, a major proangiogenic cytokine induced by hypoxia, plays a critical role in immunosuppression via these mechanisms. Hence, antiangiogenic treatment may be an effective modality to potentiate immunotherapy. Here, we discuss the local and systemic effects of VEGF on tumor immunity and propose a potentially translatable strategy to re-engineer the tumor-immune microenvironment and improve cancer immunotherapy by using lower "vascular normalizing" doses of antiangiogenic agents.

Journal ArticleDOI
TL;DR: This study paves the way to use CTCs as a liquid biopsy in patients with cancer, providing more effective options to monitor tumor genomes that are prone to change during progression, treatment, and relapse.
Abstract: Circulating tumor cells (CTC) released into blood from primary cancers and metastases reflect the current status of tumor genotypes, which are prone to changes. Here, we conducted the first comprehensive genomic profiling of CTCs using array-comparative genomic hybridization (CGH) and next-generation sequencing. We used the U.S. Food and Drug Administration-cleared CellSearch system, which detected CTCs in 21 of 37 patients (range, 1-202/7.5 mL sample) with stage IV colorectal carcinoma. In total, we were able to isolate 37 intact CTCs from six patients and identified in those multiple colorectal cancer-associated copy number changes, many of which were also present in the respective primary tumor. We then used massive parallel sequencing of a panel of 68 colorectal cancer-associated genes to compare the mutation spectrum in the primary tumors, metastases, and the corresponding CTCs from two of these patients. Mutations in known driver genes [e.g., adenomatous polyposis coli (APC), KRAS, or PIK3CA] found in the primary tumor and metastasis were also detected in corresponding CTCs. However, we also observed mutations exclusively in CTCs. To address whether these mutations were derived from a small subclone in the primary tumor or represented new variants of metastatic cells, we conducted additional deep sequencing of the primary tumor and metastasis and applied a customized statistical algorithm for analysis. We found that most mutations initially found only in CTCs were also present at subclonal level in the primary tumors and metastases from the same patient. This study paves the way to use CTCs as a liquid biopsy in patients with cancer, providing more effective options to monitor tumor genomes that are prone to change during progression, treatment, and relapse.

Journal ArticleDOI
TL;DR: The functions of autophagy in cancer and kidney injury are summarized, especially focusing on the use of chloroquine to treat cancer, and the possible side effects are addressed in the combined use ofchloroquine and anticancer drugs.
Abstract: Autophagy is a homeostatic cellular recycling system that is responsible for degrading damaged or unnecessary cellular organelles and proteins. Cancer cells are thought to use autophagy as a source of energy in the unfavorable metastatic environment, and a number of clinical trials are now revealing the promising role of chloroquine, an autophagy inhibitor, as a novel antitumor drug. On the other hand, however, the kidneys are highly vulnerable to chemotherapeutic agents. Recent studies have shown that autophagy plays a protective role against acute kidney injury, including cisplatin-induced kidney injury, and thus, we suspect that the use of chloroquine in combination with anticancer drugs may exacerbate kidney damage. Moreover, organs in which autophagy also plays a homeostatic role, such as the neurons, liver, hematopoietic stem cells, and heart, may be sensitive to the combined use of chloroquine and anticancer drugs. Here, we summarize the functions of autophagy in cancer and kidney injury, especially focusing on the use of chloroquine to treat cancer, and address the possible side effects in the combined use of chloroquine and anticancer drugs.

Journal ArticleDOI
TL;DR: The results highlight the importance of CSF 1/CSF1R signaling in the recruitment of TIMs that can limit the efficacy of radiotherapy and suggest that CSF1 inhibitors should be evaluated in clinical trials in combination with radiotherapy as a strategy to improve outcomes.
Abstract: Radiotherapy is used to treat many types of cancer, but many treated patients relapse with local tumor recurrence. Tumor-infiltrating myeloid cells (TIM), including CD11b (ITGAM)(+)F4/80 (EMR1)+ tumor-associated macrophages (TAM), and CD11b(+)Gr-1 (LY6G)+ myeloid-derived suppressor cells (MDSC), respond to cancer-related stresses and play critical roles in promoting tumor angiogenesis, tissue remodeling, and immunosuppression. In this report, we used a prostate cancer model to investigate the effects of irradiation on TAMs and MDSCs in tumor-bearing animals. Unexpectedly, when primary tumor sites were irradiated, we observed a systemic increase of MDSCs in spleen, lung, lymph nodes, and peripheral blood. Cytokine analysis showed that the macrophage colony-stimulating factor CSF1 increased by two-fold in irradiated tumors. Enhanced macrophage migration induced by conditioned media from irradiated tumor cells was completely blocked by a selective inhibitor of CSF1R. These findings were confirmed in patients with prostate cancer, where serum levels of CSF1 increased after radiotherapy. Mechanistic investigations revealed the recruitment of the DNA damage-induced kinase ABL1 into cell nuclei where it bound the CSF1 gene promoter and enhanced CSF1 gene transcription. When added to radiotherapy, a selective inhibitor of CSF1R suppressed tumor growth more effectively than irradiation alone. Our results highlight the importance of CSF1/CSF1R signaling in the recruitment of TIMs that can limit the efficacy of radiotherapy. Furthermore, they suggest that CSF1 inhibitors should be evaluated in clinical trials in combination with radiotherapy as a strategy to improve outcomes.

Journal ArticleDOI
TL;DR: The findings clinically validate OX40 as a potent immune-stimulating target for treatment in patients with cancer, providing a generalizable tool to favorably influence the antitumor properties of circulating T cells, B cells, and intratumoral regulatory T cells.
Abstract: OX40 is a potent costimulatory receptor that can potentiate T-cell receptor signaling on the surface of T lymphocytes, leading to their activation by a specifically recognized antigen. In particular, OX40 engagement by ligands present on dendritic cells dramatically increases the proliferation, effector function, and survival of T cells. Preclinical studies have shown that OX40 agonists increase antitumor immunity and improve tumor-free survival. In this study, we performed a phase I clinical trial using a mouse monoclonal antibody (mAb) that agonizes human OX40 signaling in patients with advanced cancer. Patients treated with one course of the anti-OX40 mAb showed an acceptable toxicity profile and regression of at least one metastatic lesion in 12 of 30 patients. Mechanistically, this treatment increased T and B cell responses to reporter antigen immunizations, led to preferential upregulation of OX40 on CD4(+) FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, and increased the antitumor reactivity of T and B cells in patients with melanoma. Our findings clinically validate OX40 as a potent immune-stimulating target for treatment in patients with cancer, providing a generalizable tool to favorably influence the antitumor properties of circulating T cells, B cells, and intratumoral regulatory T cells.

Journal ArticleDOI
TL;DR: It is shown that therapeutic targeting of LOX abrogates not only the extent to which fibrosis manifests, but also prevents fibrosis-enhanced metastatic colonization, and the first time that crosslinking of collagen I has been shown to enhance metastatic growth.
Abstract: Tumor metastasis is a highly complex, dynamic and inefficient process involving multiple steps, yet accounts for over 90% of cancer patient deaths. Although it has long been known that fibrotic signals enhance tumor progression and metastasis, the underlying molecular mechanisms are still unclear. Identifying events involved in creating environments that promote metastatic colonization and growth is critical for the development of effective cancer therapies. Here, we demonstrate a critical role for lysyl oxidase (LOX) in establishing a milieu within fibrosing tissues that is favorable to growth of metastastic tumor cells. We show that LOX-dependent collagen crosslinking is involved in creating a growth-permissive fibrotic microenvironment capable of supporting metastatic growth by enhancing tumor cell persistence and survival. We show that therapeutic targeting of LOX abrogates not only the extent to which fibrosis manifests, but also prevents fibrosis-enhanced metastatic colonization. Finally, we show that the LOX-mediated collagen cross-linking directly increases tumor cell proliferation, enhancing metastatic colonization and growth manifesting in vivo as increased metastasis. This is the first time that crosslinking of collagen I has been shown to enhance metastatic growth. These findings provide an important link between extracellular matrix homeostasis, fibrosis and cancer with important clinical implications for both the treatment of fibrotic disease and cancer.

Journal ArticleDOI
TL;DR: Serially passaged xenografts show biologic consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically.
Abstract: Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of severe combined immunodeficient (SCID)/Beige and nonobese diabetic (NOD)/SCID/IL-2γ-receptor null (NSG) mice under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (∼21% and ∼19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” [estrogen receptor (ER)−progesterone receptor (PR)−HER2+; n = 19]. However, we established lines from 3 ER−PR−HER2+ tumors, one ER+PR−HER2−, one ER+PR+HER2−, and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biologic consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including 2 ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis. Cancer Res; 73(15); 4885–97. ©2013 AACR .

Journal ArticleDOI
TL;DR: It is postulated that the liquid biopsy concept will contribute to a better understanding and clinical management of drug resistance in patients with cancer.
Abstract: Distant metastases harbor unique genomic characteristics not detectable in the corresponding primary tumor of the same patient and metastases located at different sites show a considerable intrapatient heterogeneity. Thus, the mere analysis of the resected primary tumor alone (current standard practice in oncology) or, if possible, even reevaluation of tumor characteristics based on the biopsy of the most accessible metastasis may not reveal sufficient information for treatment decisions. Here, we propose that this dilemma can be solved by a new diagnostic concept: liquid biopsy, that is, analysis of therapeutic targets and drug resistance-conferring gene mutations on circulating tumor cells (CTC) and cell-free circulating tumor DNA (ctDNA) released into the peripheral blood from metastatic deposits. We discuss the current challenges and future perspectives of CTCs and ctDNA as biomarkers in clinical oncology. Both CTCs and ctDNA are interesting complementary technologies that can be used in parallel in future trials assessing new drugs or drug combinations. We postulate that the liquid biopsy concept will contribute to a better understanding and clinical management of drug resistance in patients with cancer.

Journal ArticleDOI
TL;DR: A first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling, is identified and development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.
Abstract: The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.

Journal ArticleDOI
TL;DR: Multiple attempts are under way to develop KDM4 inhibitors, which could complement the existing arsenal of epigenetic drugs that are currently limited to DNA methyltransferases and histone deacetylases.
Abstract: Lysine methylation is one of the most prominent histone posttranslational modifications that regulate chromatin structure. Changes in histone lysine methylation status have been observed during cancer formation, which is thought to be a consequence of the dysregulation of histone lysine methyltransferases or the opposing demethylases. KDM4/JMJD2 proteins are demethylases that target histone H3 on lysines 9 and 36 and histone H1.4 on lysine 26. This protein family consists of three ~130-kDa proteins (KDM4A-C) and KDM4D/JMJD2D, which is half the size, lacks the double PHD and Tudor domains that are epigenome readers and present in the other KDM4 proteins, and has a different substrate specificity. Various studies have shown that KDM4A/JMJD2A, KDM4B/JMJD2B, and/or KDM4C/JMJD2C are overexpressed in breast, colorectal, lung, prostate, and other tumors and are required for efficient cancer cell growth. In part, this may be due to their ability to modulate transcription factors such as the androgen and estrogen receptor. Thus, KDM4 proteins present themselves as novel potential drug targets. Accordingly, multiple attempts are under way to develop KDM4 inhibitors, which could complement the existing arsenal of epigenetic drugs that are currently limited to DNA methyltransferases and histone deacetylases.

Journal ArticleDOI
TL;DR: By defining a new stromal cell population, this work confirms the presence of adipocyte-derived fibroblasts (ADF) in breast cancers and offers new opportunities for stroma-targeted therapies in breast cancer.
Abstract: Cancer-associated fibroblasts (CAFs) comprise the majority of stromal cells in breast cancers, yet their precise origins and relative functional contributions to malignant progression remain uncertain. Local invasion leads to the proximity cancer cells and adipocytes, which respond by phenotypical changes to generate fibroblast-like cells termed here adipocyte-derived fibroblasts (ADFs). These cells exhibit enhanced secretion of fibronectin and collagen I, increased migratory/invasive abilities and increased expression of the CAF marker FSP-1 but not αSMA. Generation of the ADF phenotype depends on reactivation of the Wnt/β-catenin pathway in response to Wnt3a secreted by tumor cells. Tumor cells co-cultivated with ADFs in 2D or spheroid culture display increased invasive capabilities. In clinical specimens of breast cancer, we confirmed the presence of this new stromal sub-population. By defining a new stromal cell population, our results offer new opportunities for stroma-targeted therapies in breast cancer.

Journal ArticleDOI
TL;DR: A Cox multivariable analysis of patient specimens revealed that IL-6 and IL-8 expression predicted patient survival times, offering a rationale for dual inhibition of IL- 6/IL-8 signaling as a therapeutic strategy to improve outcomes for patients with TNBCs.
Abstract: Triple-negative breast cancers (TNBCs) are aggressive with no effective targeted therapies. A combined database analysis identified 32 inflammation-related genes differentially expressed in TNBCs, 10 proved critical for anchorage-independent growth. In TNBC cells a LPA-LPAR2-EZH2 NF-kappaB signaling cascade was essential for expression of IL-6, IL-8 and CXCL1. Concurrent inhibition of IL-6 and IL-8 expression dramatically inhibited colony formation and cell survival in vitro and stanched tumor engraftment and growth in vivo. A Cox multivariable analysis of patient specimens revealed that IL-6 and IL-8 expression predicted patient survival times. Together these findings offer a rationale for dual inhibition of IL-6/IL-8 signaling as a therapeutic strategy to improve outcomes for TNBC patients.

Journal ArticleDOI
TL;DR: Experiments in breast cancer cells indicated constitutive, ligand-independent transcriptional activity of the D538G receptor, and overexpression of it enhanced proliferation and conferred resistance to tamoxifen, indicating a novel mechanism of acquired endocrine resistance in Breast cancer.
Abstract: Resistance to endocrine therapy occurs in virtually all patients with estrogen receptor α (ERα)-positive metastatic breast cancer, and is attributed to various mechanisms including loss of ERα expression, altered activity of coregulators, and cross-talk between the ERα and growth factor signaling pathways. To our knowledge, acquired mutations of the ERα have not been described as mediating endocrine resistance. Samples of 13 patients with metastatic breast cancer were analyzed for mutations in cancer-related genes. In five patients who developed resistance to hormonal therapy, a mutation of A to G at position 1,613 of ERα, resulting in a substitution of aspartic acid at position 538 to glycine (D538G), was identified in liver metastases. Importantly, the mutation was not detected in the primary tumors obtained prior to endocrine treatment. Structural modeling indicated that D538G substitution leads to a conformational change in the ligand-binding domain, which mimics the conformation of activated ligand-bound receptor and alters binding of tamoxifen. Indeed, experiments in breast cancer cells indicated constitutive, ligand-independent transcriptional activity of the D538G receptor, and overexpression of it enhanced proliferation and conferred resistance to tamoxifen. These data indicate a novel mechanism of acquired endocrine resistance in breast cancer. Further studies are needed to assess the frequency of D538G-ERα among patients with breast cancer and explore ways to inhibit its activity and restore endocrine sensitivity. Cancer Res; 73(23); 6856–64. ©2013 AACR.

Journal ArticleDOI
TL;DR: A novel role for PSC is identified in driving immune escape in pancreatic cancer and the evidence that STAT3 acts as a driver of stromal immunosuppression to enhance its interest as a therapeutic target is extended.
Abstract: Pancreatic stellate cells (PSC) are a subset of pancreatic cancer-associated fibroblasts. These cells provide prosurvival signals to tumors; however, little is known regarding their interactions with immune cells within the tumor microenvironment. We hypothesized that factors produced by human PSC could enhance myeloid-derived suppressor cell (MDSC) differentiation and function, which promotes an immunosuppressive microenvironment. Primary PSC cell lines (n = 7) were generated from human specimens and phenotypically confirmed via expression of vimentin, α-smooth muscle actin (α-SMA), and glial fibrillary acidic protein (GFAP). Luminex analysis indicated that PSC but not human fetal primary pancreatic fibroblast cells (HPF; negative controls) produced MDSC-promoting cytokines [interleukin (IL-6), VEGF, macrophage colony-stimulating factor (M-CSF) ] and chemokines (SDF-1, MCP-1). Culture of peripheral blood mononuclear cells [peripheral blood mononuclear cell (PBMC), n = 3 donors] with PSC supernatants or IL-6/granulocyte macrophage colony-stimulating factor (GM-CSF; positive control) for 7 days promoted PBMC differentiation into an MDSC (CD11b+CD33+) phenotype and a subpopulation of polymorphonuclear CD11b+CD33+CD15+ cells. The resulting CD11b+CD33+ cells functionally suppressed autologous T-lymphocyte proliferation. In contrast, supernatants from HPF did not induce an MDSC phenotype in PBMCs. Culture of normal PBMCs with PSC supernatants led to STAT3 but not STAT1 or STAT5 phosphorylation. IL-6 was an important mediator as its neutralization inhibited PSC supernatant-mediated STAT3 phosphorylation and MDSC differentiation. Finally, the FLLL32 STAT3 inhibitor abrogated PSC supernatant-mediated MDSC differentiation, PSC viability, and reduced autocrine IL-6 production indicating these processes are STAT3 dependent. These results identify a novel role for PSC in driving immune escape in pancreatic cancer and extend the evidence that STAT3 acts as a driver of stromal immunosuppression to enhance its interest as a therapeutic target.

Journal ArticleDOI
TL;DR: External validation of cirrhosis and hepatocellular carcinoma serum specimens showed that this combination biomarker, betaine and propionylcarnitine, is useful for diagnosis of liver cancer with a supplementary role to α-fetoprotein.
Abstract: Hepatocellular carcinoma has a poor prognosis due to its rapid development and early metastasis. In this report, we characterized the metabolic features of hepatocellular carcinoma using a nontargeted metabolic profiling strategy based on liquid chromatography-mass spectrometry. Fifty pairs of liver cancer samples and matched normal tissues were collected from patients having hepatocellular carcinoma, including tumor tissues, adjacent noncancerous tissues, and distal noncancerous tissues, and 105 metabolites were filtered and identified from the tissue metabolome. The principal metabolic alternations in HCC tumors included elevated glycolysis, gluconeogenesis, and β-oxidation with reduced tricarboxylic acid cycle and Δ-12 desaturase. Furthermore, increased levels of glutathione and other antioxidative molecules, together with decreased levels of inflammatory-related polyunsaturated fatty acids and phospholipase A2, were observed. Differential metabolite levels in tissues were tested in 298 serum specimens from patients with chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Betaine and propionylcarnitine were confirmed to confer good diagnostic potential to distinguish hepatocellular carcinoma from chronic hepatitis and cirrhosis. External validation of cirrhosis and hepatocellular carcinoma serum specimens further showed that this combination biomarker is useful for diagnosis of hepatocellular carcinoma with a supplementary role to α-fetoprotein.

Journal ArticleDOI
TL;DR: Preclinical proof-of-concept that inhibiting mammalian Wnts can be achieved by targeting PORCN with small-molecule inhibitors such as C59 is offered, and that this is a safe and feasible strategy in vivo.
Abstract: Porcupine (PORCN) is a membrane bound O-acyltransferase that is required for Wnt palmitoylation, secretion, and biologic activity. All evaluable human Wnts require PORCN for their activity, suggesting that inhibition of PORCN could be an effective treatment for cancers dependent on excess Wnt activity. In this study, we evaluated the PORCN inhibitor Wnt-C59 (C59), to determine its activity and toxicity in cultured cells and mice. C59 inhibits PORCN activity in vitro at nanomolar concentrations, as assessed by inhibition of Wnt palmitoylation, Wnt interaction with the carrier protein Wntless/WLS, Wnt secretion, and Wnt activation of β-catenin reporter activity. In mice, C59 displayed good bioavailability, as once daily oral administration was sufficient to maintain blood concentrations well above the IC(50). C59 blocked progression of mammary tumors in MMTV-WNT1 transgenic mice while downregulating Wnt/β-catenin target genes. Surprisingly, mice exhibit no apparent toxicity, such that at a therapeutically effective dose there were no pathologic changes in the gut or other tissues. These results offer preclinical proof-of-concept that inhibiting mammalian Wnts can be achieved by targeting PORCN with small-molecule inhibitors such as C59, and that this is a safe and feasible strategy in vivo.

Journal ArticleDOI
TL;DR: These results provide clear evidence, and a supporting mechanism, for increased radiation sensitivity in HPV+ HNC relative to HPV- HNC, and suggest that low levels of normally functioning p53 in HPV+, which could be activated by radiation, leading to cell death.
Abstract: Patients with human papillomavirus (HPV+)-associated head and neck cancer (HNC) show significantly improved survival outcome compared with those with HPV-negative (HPV-) tumors. Published data examining this difference offers conflicting results to date. We systematically investigated the radiation sensitivity of all available validated HPV+ HNC cell lines and a series of HPV- HNC cell lines using in vitro and in vivo techniques. HPV+ HNCs exhibited greater intrinsic radiation sensitivity (average SF2 HPV-: 0.59 vs. HPV+: 0.22; P < 0.0001), corresponding with a prolonged G2-M cell-cycle arrest and increased apoptosis following radiation exposure (percent change 0% vs. 85%; P = 0.002). A genome-wide microarray was used to compare gene expression 24 hours following radiation between HPV+ and HPV- cell lines. Multiple genes in TP53 pathway were upregulated in HPV+ cells (Z score 4.90), including a 4.6-fold increase in TP53 (P < 0.0001). Using immortalized human tonsillar epithelial (HTE) cells, increased radiation sensitivity was seen in cell expressing HPV-16 E6 despite the effect of E6 to degrade p53. This suggested that low levels of normally functioning p53 in HPV+ HNC cells could be activated by radiation, leading to cell death. Consistent with this, more complete knockdown of TP53 by siRNA resulted in radiation resistance. These results provide clear evidence, and a supporting mechanism, for increased radiation sensitivity in HPV+ HNC relative to HPV- HNC. This issue is under active investigation in a series of clinical trials attempting to de-escalate radiation (and chemotherapy) in selected patients with HPV+ HNC in light of their favorable overall survival outcome.

Journal ArticleDOI
TL;DR: A TGF-β-inducible gene signature specific to CAFs in advanced high-grade serous ovarian tumors is identified, and it is shown how T GF-β stimulates ovarian cancer cell motility and invasion by upregulating the CAF-specific gene VCAN.
Abstract: TGF-β has limited effects on ovarian cancer cells but its contributions to ovarian tumor growth might be mediated through elements of the tumor microenvironment. In the present study, we tested the hypothesis that TGF- modulates ovarian cancer progression by modulating the contribution of cancer-associated fibroblasts (CAFs) that are present in the microenvironment. Transcriptome profiling of microdissected stromal and epithelial components of high-grade serous ovarian tumors and TGF-β-treated normal ovarian fibroblasts identified versican (VCAN) as a key upregulated target gene in CAFs. Functional evaluations in co-culture experiments demonstrated that TGF-β enhanced the aggressiveness of ovarian cancer cells by upregulating VCAN in CAFs. VCAN expression was regulated in CAFs through TGF-β receptor type II and SMAD signaling. Upregulated VCAN promoted the motility and invasion of ovarian cancer cells by activating the NF-κB signaling pathway and by upregulating expression of CD44, MMP9, and the hyaluronan-mediated motility receptor (HMMR). Our work identified a TGF-β-inducible gene signature specific to CAFs in advanced high-grade serous ovarian tumors, and showed how TGF-β stimulates ovarian cancer cell motility and invasion by upregulating the CAF-specific gene VCAN. These findings suggest insights to develop or refine strategies for TGF-β-targeted therapy of ovarian cancer.