scispace - formally typeset
Search or ask a question

Showing papers by "Yvan Castin published in 2017"


Journal ArticleDOI
TL;DR: In this article, a generalized BCS Ansatz with moving pairs was used to compute the phonon-phonon coupling amplitudes in the collisionless regime of a pair-condensed Fermi gas with a linear start and a concavity at low wave number that changes from upwards to downwards in the BEC-BCS crossover.
Abstract: We study the interactions among phonons and the phonon lifetime in a pair-condensed Fermi gas in the BEC-BCS crossover in the collisionless regime. To compute the phonon-phonon coupling amplitudes we use a microscopic model based on a generalized BCS Ansatz including moving pairs, which allows for a systematic expansion around the mean field BCS approximation of the ground state. We show that the quantum hydrodynamic expression of the amplitudes obtained by Landau and Khalatnikov apply only on the energy shell, that is for resonant processes that conserve energy. The microscopic model yields the same excitation spectrum as the Random Phase Approximation, with a linear (phononic) start and a concavity at low wave number that changes from upwards to downwards in the BEC-BCS crossover. When the concavity of the dispersion relation is upwards at low wave number, the leading damping mechanism at low temperature is the Beliaev-Landau process 2 phonons $\leftrightarrow$ 1 phonon while, when the concavity is downwards, it is the Landau-Khalatnikov process 2 phonons $\leftrightarrow$ 2 phonons. In both cases, by rescaling the wave vectors to absorb the dependence on the interaction strength, we obtain a universal formula for the damping rate. This universal formula corrects and extends the original analytic results of Landau and Khalatnikov [ZhETF {\bf 19}, 637 (1949)] for the $2\leftrightarrow2$ processes in the downward concavity case. In the upward concavity case, for the Beliaev 1$\leftrightarrow$ 2 process for the unitary gas at zero temperature, we calculate the damping rate of an excitation with wave number $q$ including the first correction proportional to $q^7$ to the $q^5$ hydrodynamic prediction, which was never done before in a systematic way.

30 citations


Journal ArticleDOI
TL;DR: In this paper, the interaction-induced generation of mesoscopic coherent spin state superpositions (small cat states) from an initial coherent spin states in bimodal Bose-Einstein condensates and the subsequent phase revival was studied.
Abstract: We study theoretically the interaction-induced generation of mesoscopic coherent spin state superpositions (small cat states) from an initial coherent spin state in bimodal Bose-Einstein condensates and the subsequent phase revival, including decoherence due to particle losses and fluctuations of the total particle number In a full multimode description, we propose a preparation procedure of the initial coherent spin state and we study the effect of preexisting thermal fluctuations on the phase revival, and on the spin and orbito-spinorial cat fidelities

26 citations


Journal Article
TL;DR: In this article, the interaction-induced generation of mesoscopic coherent spin state superpositions (small cat states) from an initial coherent spin states in bimodal Bose-Einstein condensates and the subsequent phase revival, including decoherence due to particle losses and fluctuations of the total particle number was studied.
Abstract: We study theoretically the interaction-induced generation of mesoscopic coherent spin state superpositions (small cat states) from an initial coherent spin state in bimodal Bose-Einstein condensates and the subsequent phase revival, including decoherence due to particle losses and fluctuations of the total particle number. In a full multimode description, we propose a preparation procedure of the initial coherent spin state and we study the effect of preexisting thermal fluctuations on the phase revival, and on the spin and orbito-spinorial cat fidelities.

3 citations