scispace - formally typeset
Search or ask a question

Showing papers by "Zhen Hua Li published in 2022"


Journal ArticleDOI
TL;DR: In this article , a boron catalyst was used to catalyse the selective hydrogenolysis of unstrained C(aryl)−C(alkyl) bonds of alkylarenes in the absence of directing groups at ambient temperature.
Abstract: The hydrogenolysis of C–C bonds is one of the most important processes in the petroleum industry. These transformations typically rely on heterogeneous catalysts and take place at high temperatures and high pressures with limited selectivity. Employing homogeneous transition metal catalysts, while allowing the hydrogenolysis of C–C bonds to proceed under much milder conditions, is only suitable for substrates containing strained C–C bonds or directing groups. Here we report that a borenium complex can catalyse the selective hydrogenolysis of unstrained C(aryl)–C(alkyl) bonds of alkylarenes in the absence of directing groups at ambient temperature, affording the corresponding alkanes and arenes. Mechanistic studies suggest a reaction pathway that involves a synergistic activation of dihydrogen by the borenium complex and alkylarenes, followed by retro-Friedel–Crafts reaction to cleave the C(aryl)–C(alkyl) bonds. The synthetic utility of this protocol is demonstrated by the conversion of post-consumer polystyrene into valuable benzene and phenylalkanes with mass recovery rates above 90%. Hydrogenolysis of unactivated C(aryl)–C(alkyl) bonds is a challenging task even in the presence of metal catalysts. Now, an approach using a boron catalyst is described that facilitates the hydrogenolysis of alkylarenes under mild conditions, and its utility is demonstrated by degrading polystyrene waste into benzene and phenylalkanes.

6 citations


Journal ArticleDOI
TL;DR: In this article, a metal-free catalytic system was proposed for the borylation of C-H bonds in sterically encumbered positions, which has been a challenging task for transition-metal systems.
Abstract: Non-metal-catalyzed C-H borylation of arenes represents a sustainable and environment-friendly approach for the functionalization of arenes. Despite its promise as an alternative to traditional transition-metal systems, its substrate scope is generally limited to electron-rich arenes, thus hindering its application in organic synthesis. Herein, we report the development of a borenium-ion catalyst which can borylate unactivated arenes under ambient conditions with 4-chlorocatecholborane (HBcatCl) as borylation reagent. This metal-free catalytic system is suitable for the borylation of C-H bonds in sterically encumbered positions, which has been a challenging task for transition-metal systems. Additionally, this catalytic system allows para-selective one-pot borylation of phenols, which has not been achieved by using transition-metal systems. Our mechanistic investigations and computational studies support a synergistic activation of the H-BcatCl bond by the arene substrate and the borenium-ion catalyst. This generates a Wheland intermediate and a neutral hydroborane species and is followed by deprotonation of the Wheland intermediate with the hydroborane species. The latter step of C-H bond cleavage is likely the rate-limiting step.

5 citations


Posted ContentDOI
TL;DR: In this article , an all-inorganic biomimetic system bearing robust nitrogen-neighbored single-cobalt site/pyridinic-N site (Co-N4/Py-N) pairs can act cooperatively as an oxidase mimic, which renders an engaged coupling of oxygen reduction with synthetically beneficial chemical transformations.
Abstract: The development of biomimetic catalytic systems that can imitate or even surpass natural enzymes remains an ongoing challenge, especially for bioinspired syntheses that can access non-natural reactions. Here, we show how an all-inorganic biomimetic system bearing robust nitrogen-neighbored single-cobalt site/pyridinic-N site (Co-N4/Py-N) pairs can act cooperatively as an oxidase mimic, which renders an engaged coupling of oxygen (O2) reduction with synthetically beneficial chemical transformations. By developing this broadly applicable platform, the scalable synthesis of greater than 100 industrially and pharmaceutically appealing O-silylated compounds including silanols, borasiloxanes, and silyl ethers via the unprecedented aerobic oxidation of hydrosilane under ambient conditions is demonstrated. Moreover, this heterogeneous oxidase mimic also offers the potential for expanding the catalytic scope of enzymatic synthesis. We anticipate that the strategy demonstrated here will pave a new avenue for understanding the underlying nature of redox enzymes and open up a new class of material systems for artificial biomimetics.

1 citations


Journal ArticleDOI
TL;DR: In this article , the authors evaluated potential cooperative interactions between activated charcoal and herb extracts and found that the herb extracts present in CHC were largely represented by phenolic acids (PAs, caffeic acid, and vanillin) and flavonoids (FVs, daidzein, and quercetin-D-glucoside) in the detoxification activity of CHC in a mouse rescue test when the mice were gavaged with T-2 mycotoxin.
Abstract: The charcoal–herb extract complex (CHC) is a product of activated charcoal sorption of herb extracts that contain phenolic acids and flavonoids. The effective dose of CHC to promote animal growth is about one tenth of effective dosage of activated charcoal. The purpose of this study was to evaluate potential cooperative interactions between activated charcoal and herb extracts. Two feeding experiments were conducted. In Experiment 1, a responsive dose of CHC to broiler growth was determined to be 250 mg/kg of the diet. In Experiment 2, CHC increased growth performance and improved meat quality, but decreased indices of oxidative stress and inflammation as compared with similar doses of activated charcoal or herb extracts. CHC also increased concentrations of serum cholesterol, bile acid in the gallbladder, and bile acid in feces. The herb extracts present in CHC were largely represented by phenolic acids (PAs, caffeic acid, and vanillin) and flavonoids (FVs, daidzein, and quercetin-D-glucoside) in the detoxification activity of CHC in a mouse rescue test when the mice were gavaged with T-2 mycotoxin. PAs and FVs significantly increased the expression of CYP7A1, PXR, CYP3A37, Slco1B3, and Bsep in chicken primary hepatocytes. In conclusion, CHC integrated the cooperative interactions of activated charcoal and herb extracts via the FXR/RXR-PXR pathway to detoxify mycotoxins.

1 citations