scispace - formally typeset
Search or ask a question

Showing papers presented at "Computer Assisted Radiology and Surgery in 2021"


Journal ArticleDOI
21 Jun 2021
TL;DR: In this article, the authors proposed an end-to-end system that includes a deep neural network with hourglass architecture to predict dental landmarks in single, double and triple rooted teeth using periapical radiographs.
Abstract: Periodontitis is the sixth most prevalent disease worldwide and periodontal bone loss (PBL) detection is crucial for its early recognition and establishment of the correct diagnosis and prognosis. Current radiographic assessment by clinicians exhibits substantial interobserver variation. Computer-assisted radiographic assessment can calculate bone loss objectively and aid in early bone loss detection. Understanding the rate of disease progression can guide the choice of treatment and lead to early initiation of periodontal therapy. We propose an end-to-end system that includes a deep neural network with hourglass architecture to predict dental landmarks in single, double and triple rooted teeth using periapical radiographs. We then estimate the PBL and disease severity stage using the predicted landmarks. We also introduce a novel adaptation of MixUp data augmentation that improves the landmark localisation. We evaluate the proposed system using cross-validation on 340 radiographs from 63 patient cases containing 463, 115 and 56 single, double and triple rooted teeth. The landmark localisation achieved Percentage Correct Keypoints (PCK) of 88.9%, 73.9% and 74.4%, respectively, and a combined PCK of 83.3% across all root morphologies, outperforming the next best architecture by 1.7%. When compared to clinicians’ visual evaluations of full radiographs, the average PBL error was 10.69%, with a severity stage accuracy of 58%. This simulates current interobserver variation, implying that diverse data could improve accuracy. The system showed a promising capability to localise landmarks and estimate periodontal bone loss on periapical radiographs. An agreement was found with other literature that non-CEJ (Cemento-Enamel Junction) landmarks are the hardest to localise. Honing the system’s clinical pipeline will allow for its use in intervention applications.

9 citations


Journal ArticleDOI
03 Jul 2021
TL;DR: In this article, a multimodal pipeline, referred to as PassFlow, was proposed to predict 84 clinical post-operative clinical scores for Parkinson's disease patients using morphological biomarkers extracted from T1 images.
Abstract: Purpose: Deep Brain Stimulation (DBS) is a proven therapy for Parkinson's Disease (PD), frequently resulting in an enhancement of motor function. Nonetheless, several undesirable side effects can occur after DBS, which can worsen the quality of life of the patient. Thus, the clinical team has to carefully select patients on whom to perform DBS. Over the past decade, there have been some attempts to relate pre-operative data and DBS clinical outcomes, with most focused on the motor symptomatology. In this paper, we propose a machine learning based method able to predict a large number of DBS clinical outcomes for PD. Methods: We propose a multimodal pipeline, referred to as PassFlow, which predicts 84 clinical post-operative clinical scores. PassFlow is composed of an artificial neural network to compress clinical information, an image processing method from the state-of-the-art to extract morphological biomarkers our of T1 imaging, and an SVM to perform the regressions. We validated PassFlow on 196 PD patients who undergone a DBS. Results: PassFlow showed correlation coefficients as high as 0.71 and were able to significantly predict 63 out of the 84 scores, outperforming a comparative linear method. The number of metrics that are predicted with this pre-operative information was also found to be correlated with the number of patients with this information available, indicating that the PassFlow method is still actively learning. Conclusion: We presented a novel, machine learning based pipeline to predict a variety of post-operative clinical outcomes of DBS for PD patients. PassFlow took into account various bio-markers, arising from different data modalities, showing high correlation coefficients for some scores from pre-operative data only. It indicates that many clinical outcomes of DBS can be predicted agnostic to the specific simulation parameters, as PassFlow has been validated without such stimulation-related information.

4 citations


Journal ArticleDOI
03 May 2021
TL;DR: In this paper, an integrated multi-modality image-guided surgery (IGS) system for skull base neurosurgery is presented. But no commercial system presently permits its integration with other essential non-imaging-based intraoperative monitoring modalities such as intraoperative neuromonitoring.
Abstract: Image-guided surgery (IGS) is an integral part of modern neuro-oncology surgery. Navigated ultrasound provides the surgeon with reconstructed views of ultrasound data, but no commercial system presently permits its integration with other essential non-imaging-based intraoperative monitoring modalities such as intraoperative neuromonitoring. Such a system would be particularly useful in skull base neurosurgery. We established functional and technical requirements of an integrated multi-modality IGS system tailored for skull base surgery with the ability to incorporate: (1) preoperative MRI data and associated 3D volume reconstructions, (2) real-time intraoperative neurophysiological data and (3) live reconstructed 3D ultrasound. We created an open-source software platform to integrate with readily available commercial hardware. We tested the accuracy of the system’s ultrasound navigation and reconstruction using a polyvinyl alcohol phantom model and simulated the use of the complete navigation system in a clinical operating room using a patient-specific phantom model. Experimental validation of the system’s navigated ultrasound component demonstrated accuracy of $$<4.5\,\hbox {mm}$$ and a frame rate of 25 frames per second. Clinical simulation confirmed that system assembly was straightforward, could be achieved in a clinically acceptable time of $$<15\,\hbox {min}$$ and performed with a clinically acceptable level of accuracy. We present an integrated open-source research platform for multi-modality IGS. The present prototype system was tailored for neurosurgery and met all minimum design requirements focused on skull base surgery. Future work aims to optimise the system further by addressing the remaining target requirements.

1 citations