scispace - formally typeset
Search or ask a question
Institution

Nanjing Medical University

EducationNanjing, China
About: Nanjing Medical University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Cancer & Cell growth. The organization has 52221 authors who have published 37904 publications receiving 635831 citations. The organization is also known as: National Jiangsu Medical College & Nanjing Medical College.
Topics: Cancer, Cell growth, Medicine, Population, Apoptosis


Papers
More filters
Journal ArticleDOI
TL;DR: NLRP1/caspase-1 signaling participates in the seizure-induced degenerative process in humans and in the animal model of TLE and points to the silencing of NLRP1 inflammasome as a promising strategy for TLE therapy.
Abstract: Temporal lobe epilepsy (TLE) is often characterized pathologically by severe neuronal loss in the hippocampus. Understanding the mechanisms of neuron death is key to preventing the neurodegeneration associated with TLE. However, the involvement of neuronal loss to the epileptogenic process has yet to be fully determined. Recent studies have shown that the activation of NLRP1 can generate a functional caspase-1-containing inflammasome in vivo to drive the proinflammatory programmed cell death termed ‘pyroptosis’, which has a key role in the pathogenesis of neurological disorders. To the best of our knowledge, there are no reported studies that performed detailed identification and validation of NLRP1 inflammasome during the epileptogenic process. We first compared expression of NLRP1 and caspase-1 in resected hippocampus from patients with intractable mesial temporal lobe epilepsy (mTLE) with that of matched control samples. To further examine whether the activation of NLRP1 inflammasome contributes to neuronal pyroptosis, we employed a nonviral strategy to knock down the expression of NLRP1 and caspase-1 in the amygdala kindling-induced rat model. Proinflammatory cytokines levels and hippocampal neuronal loss were evaluated after 6 weeks of treatment in these NLRP1 or caspase-1 deficiency TLE rats. Western blotting detected upregulated NLRP1 levels and active caspase-1 in mTLE patients in comparison to those levels seen in the controls, suggesting a role for this inflammasome in mTLE. Moreover, we employed direct in vivo infusion of nonviral small interfering RNA to knockdown NLRP1 or caspase-1 in the amygdala kindling-induced rat model, and discovered that these NLRP1 or caspase-1 silencing rats resulted in significantly reduced neuronal pyroptosis. Our data suggest that NLRP1/caspase-1 signaling participates in the seizure-induced degenerative process in humans and in the animal model of TLE and points to the silencing of NLRP1 inflammasome as a promising strategy for TLE therapy.

127 citations

Journal ArticleDOI
Tong Yusuo1, Juan Tan1, Xi-Lei Zhou1, Yaqi Song1, Ying-Jian Song1 
TL;DR: This study demonstrates that the SII is an independent prognostic indicator of poor outcomes for patients with stage III NSCLC and is superior to other inflammation-based factors in terms of prognostic ability.
Abstract: There is increasing evidence that the existence of systemic inflammation response is correlated with poor prognosis in several solid tumors. The aim of this retrospective study was to investigate the association between systemic immune-inflammation index (SII) and therapy response and overall survival in patients with stage III non-small cell lung cancer (NSCLC). The prognostic values of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and prognostic nutritional index (PNI) were also evaluated. In total, 332 patients with new diagnosis of stage III NSCLC were included in this retrospective analysis. SII was defined as platelet counts × neutrophil counts/lymphocyte counts. Receiver operating characteristic (ROC) curve was used to evaluate the optimal cut-off value for SII, NLR, PLR and PNI. Univariate and multivariate survival analysis were performed to identify the factors correlated with overall survival. Applying cut-offs of ≥ 660 (SII), ≥ 3.57 (NLR), ≥ 147 (PLR), ≤ 52.95 (PNI), SII ≥ 660 was significantly correlated with worse ECOG PS (< 0.001), higher T stage (< 0.001), advanced clinical stage (p = 0.019), and lower response rate (p = 0.018). In univariate analysis, SII ≥ 660, NLR ≥ 3.57, PLR ≥ 147, and PNI ≤ 52.95 were significantly associated with worse overall survival (p all < 0.001). Patients with SII ≥ 660 had a median overall survival of 10 months, and patients with SII < 660 showed a median overall survival of 30 months. In multivariate analysis only ECOG PS (HR, 1.744; 95% CI 1.158–2.626; p = 0.008), T stage (HR, 1.332; 95% CI 1.032–1.718; p = 0.028), N stage (HR, 1.848; 95% CI 1.113–3.068; p = 0.018), SII (HR, 2.105; 95% CI 1.481–2.741; p < 0.001) and NLR ≥ 3.57 (HR, 1.934; 95% CI 1.448–2.585; p < 0.001) were independently correlated with overall survival. This study demonstrates that the SII is an independent prognostic indicator of poor outcomes for patients with stage III NSCLC and is superior to other inflammation-based factors in terms of prognostic ability.

127 citations

Journal ArticleDOI
TL;DR: Evidence is provided that AGEs induces cardiomyocyte autophagy by, at least in part, inhibiting the PI3K/Akt/mTOR pathway via RAGE.
Abstract: Rat neonate cardiomyocytes were cultured and treated with AGEs at different concentration. Two classic autophagy markers, microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1, were detected by western blot assay. The inhibition of RAGE and phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mTOR pathway were applied to cells, respectively. AGEs administration enhanced the expression of Beclin-1 and LC3 II in cardiomyocytes, increased the number of autophagic vacuoles and impaired the cell viability in dose-dependant manners. Also, AGEs inhibited the PI3K/Akt/mTOR pathway via RAGE. Inhibition of RAGE with RAGE antibody reduced expression of Beclin-1 and LC3 II/I and inhibited the cellular autophagy, accompanied by the reactivation of PI3K/Akt/mTOR pathway in cultured cells. Notably, the presence of inhibition of PI3K/Akt/mTOR pathway abolished the protective effect of RAGE inhibition on cardiomyocytes. This study provides evidence that AGEs induces cardiomyocyte autophagy by, at least in part, inhibiting the PI3K/Akt/mTOR pathway via RAGE. Previous studies showed that the accumulation of advanced glycation end products (AGEs) induce cardiomyocyte apoptoisis, leading to heart dysfunction. However, the effect of AGEs on another cell death pathway, autophagy, in cardiomyocytes remains unknown.

127 citations

Journal ArticleDOI
TL;DR: It is shown that AQP4 knockout inhibits the proliferation, survival, migration and neuronal differentiation of ANSCs derived from the subventricular zone of adult mice, and this function of AQP 4 is probably mediated by its action on intracellular Ca2+ dynamics.
Abstract: Aquaporin-4 (AQP4), a key molecule for maintaining water and ion homeostasis in the central nervous system, is expressed in adult neural stem cells (ANSCs) as well as astrocytes. However, little is known about the functions of AQP4 in the ANSCs in vitro. Here we show that AQP4 knockout inhibits the proliferation, survival, migration and neuronal differentiation of ANSCs derived from the subventricular zone of adult mice. Flow cytometric cell cycle analysis revealed that AQP4 knockout increased the basal apoptosis and induced a G2-M arrest in ANSCs. Using Fluo-3 Ca2+ imaging, we show that AQP4 knockout alters the spontaneous Ca2+ oscillations by frequency enhancement and amplitude suppression, and suppresses KCl-induced Ca2+ influx. AQP4 knockout downregulated the expression of connexin43 and the L-type voltage-gated Ca2+ channel CaV1.2 subtype in ANSCs. Together, these findings suggest that AQP4 plays a crucial role in regulating the proliferation, migration and differentiation of ANSCs, and this function of AQP4 is probably mediated by its action on intracellular Ca2+ dynamics.

126 citations

Journal ArticleDOI
TL;DR: A low level of GOS (0.24 g/100 mL) in infant formula can improve stool frequency, decrease fecal pH, and stimulate intestinal Bifidobacteria and Lactobacilli as in those fed with human milk.
Abstract: AIM: To investigate the effect of a new infant formula supplemented with a low level (0.24 g/100 mL) of galacto-oligosaccharide (GOS) on intestinal micro-flora (Bifidobacteria , Lactobacilli and E. coli) and fermentation characteristics in term infants, compared with human milk and a standard infant formula without GOS. METHODS: Term infants (n = 371) were approached in this study in three hospitals of China. All infants started breast-feeding. Those who changed to formula-feeding within 4 wk after birth were randomly assigned to one of the two formula groups. Growth and stool characteristics, and side effects that occurred in recruited infants were recorded in a 3-mo follow-up period. Fecal samples were collected from a subpopulation of recruited infants for analysis of intestinal bacteria (culture technique), acetic acid (gas chromatography) and pH (indicator strip). RESULTS: After 3 mo, the intestinal Bifidobacteria , Lactobacilli , acetic acid and stool frequency were significantly increased, and fecal pH was decreased in infants fed with the GOS-formula or human milk, compared with those fed with the formula without GOS. No significant differences were observed between the GOS formula and human milk groups. Supplementation with GOS did not influence the incidence of crying, regurgitation and vomiting. CONCLUSION: A low level of GOS (0.24 g/100 mL) in infant formula can improve stool frequency, decrease fecal pH, and stimulate intestinal Bifidobacteria and Lactobacilli as in those fed with human milk.

126 citations


Authors

Showing all 52549 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Feng Zhang1721278181865
Yang Yang1712644153049
Lei Jiang1702244135205
Peter T. Fox13162283369
Peter J. Anderson12096663635
Jinde Cao117143057881
John P. Neoptolemos11264852928
Wei Zhang112118993641
Jie Wu112153756708
Jinhua Ye11265849496
Patrick Y. Wen10983852845
Fei Wang107182453587
David C. Christiani100105255399
Network Information
Related Institutions (5)
Second Military Medical University
20.4K papers, 449.4K citations

95% related

Fourth Military Medical University
20.7K papers, 425.5K citations

95% related

Capital Medical University
47.2K papers, 811.2K citations

94% related

Peking Union Medical College
61.8K papers, 1.1M citations

94% related

Fudan University
117.9K papers, 2.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023105
2022429
20215,802
20205,289
20194,263
20183,590