scispace - formally typeset
Search or ask a question
Institution

Swiss National Park

ArchiveZernez, Switzerland
About: Swiss National Park is a archive organization based out in Zernez, Switzerland. It is known for research contribution in the topics: Rupicapra & Population. The organization has 17 authors who have published 40 publications receiving 814 citations. The organization is also known as: Schweizerischer Nationalpark.

Papers
More filters
Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations

Journal ArticleDOI
Jonas J. Lembrechts1, Juha Aalto2, Juha Aalto3, Michael B. Ashcroft4  +187 moreInstitutions (81)
TL;DR: A call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world, will pave the way towards an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
Abstract: Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.

83 citations

Journal ArticleDOI
TL;DR: In this paper, a conceptual framework using the theory and methodology of vegetation ecology and imaging spectroscopy to link the vegetation community's functional to its spectral signature was developed, which is particularly important given the increased availability of airborne data and the prospective launches of spaceborne instruments in the near future.
Abstract: 1.The comparable and integrated nature of plant functional types and advances in high spectral resolution remote sensing techniques (i.e., imaging spectroscopy) make their combination highly interesting for spatially continuous and repeatable large-scale ecosystem monitoring. Depending on physical environment and stress, plants invest in co-varying biochemical and structural traits, influencing spectral characteristics of vegetation. These traits are assumed to bear a more direct causal relationship to plant functional types than to plant life/growth forms. However, the connection between a vegetation community's functional and spectral response remains to be established. 2.We assessed the correlation structure between i) biochemical and structural vegetation traits (biomass, dry matter content, nitrogen content, neutral detergent fibre content), ii) plant life/growth forms, and iii) seven plant functional types of two categories (strategy types, indicator values) collected in heterogeneous alpine grassland. We then used airborne imaging spectroscopy data from the same area to model and predict plant life/growth forms and plant functional types at the vegetation community level using partial least squares regression (PLSR), and validated our models based on an independent dataset. 3.We found high correlations between many of the biochemical and structural vegetation traits, plant life/growth forms and plant functional types tested. Using airborne imaging spectroscopy data, we successfully modelled and predicted most plant life/growth forms (R2 max. = 0.56) and all plant functional types (R2 max. = 0.62). However, model performance for plant life/growth forms decreased substantially during external validation and overall model consistency was low (average change in R2 = 72%), while plant functional type models were much more consistent (average change in R2 = 20%). Based on our findings, we developed a conceptual framework using the theory and methodology of vegetation ecology and imaging spectroscopy to link the vegetation community's functional to its spectral signature. 4.Our results encourage the use of plant functional types in imaging spectroscopy in order to aid the large-scale monitoring of ecosystems, which is particularly important given the increased availability of airborne data and the prospective launches of spaceborne instruments in the near future. This article is protected by copyright. All rights reserved.

76 citations

Journal ArticleDOI
Amanda E. Bates1, Richard B. Primack2, Brandy S. Biggar1, Tomas J. Bird3  +343 moreInstitutions (106)
TL;DR: In this paper, the authors report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies.

64 citations

Journal ArticleDOI
TL;DR: In this article, a review assesses the change in spring phenology and upslope shifts of plants, animals and fungi from evidence in published papers and previously unpublished data and provides evidence that spring phenological has been shifting earlier during the past four decades and distribution ranges show an upwards trend for most of the taxonomic groups for which there are sufficient data.
Abstract: Mountain areas are biodiversity hotspots and provide a multitude of ecosystem services of irreplaceable socio-economic value. In the European Alps, air temperature has increased at a rate of about 0.36°C decade-1 since 1970, leading to glacier retreat and significant snowpack reduction. Due to these rapid environmental changes, this mountainous region is undergoing marked changes in spring phenology and elevational distribution of animals, plants and fungi. Long-term monitoring in the European Alps offers an excellent natural laboratory to synthetize climate-related changes in spring phenology and elevational distribution for a large array of taxonomic groups. This review assesses the climatic changes that have occurred across the European Alps during recent decades, spring phenological changes and upslope shifts of plants, animals and fungi from evidence in published papers and previously unpublished data. Our review provides evidence that spring phenology has been shifting earlier during the past four decades and distribution ranges show an upwards trend for most of the taxonomic groups for which there are sufficient data. The first observed activity of reptiles and terrestrial insects (e.g. butterflies) in spring has shifted significantly earlier, at an average rate of -5.7 and -6.0 days decade-1 , respectively. By contrast, the first observed spring activity of semi-aquatic insects (e.g. dragonflies and damselflies) and amphibians, as well as the singing activity or laying dates of resident birds, show smaller non-significant trends ranging from -1.0 to +1.3 days decade-1 . Leaf-out and flowering of woody and herbaceous plants showed intermediate trends with mean values of -2.4 and -2.8 days decade-1 , respectively. Regarding species distribution, plants, animals and fungi (N = 2133 species) shifted the elevation of maximum abundance (optimum elevation) upslope at a similar pace (on average between +18 and +25 m decade-1 ) but with substantial differences among taxa. For example, the optimum elevation shifted upward by +36.2 m decade-1 for terrestrial insects and +32.7 m decade-1 for woody plants, whereas it was estimated to range between -1.0 and +11 m decade-1 for semi-aquatic insects, ferns, birds and wood-decaying fungi. The upper range limit (leading edge) of most species also shifted upslope with a rate clearly higher for animals (from +47 to +91 m decade-1 ) than for plants (from +17 to +40 m decade-1 ), except for semi-aquatic insects (-4.7 m decade-1 ). Although regional land-use changes could partly explain some trends, the consistent upward shift found in almost all taxa all over the Alps is likely reflecting the strong warming and the receding of snow cover that has taken place across the European Alps over recent decades. However, with the possible exception of terrestrial insects, the upward shift of organisms seems currently too slow to track the pace of isotherm shifts induced by climate warming, estimated at about +62 to +71 m decade-1 since 1970. In the light of these results, species interactions are likely to change over multiple trophic levels through phenological and spatial mismatches. This nascent research field deserves greater attention to allow us to anticipate structural and functional changes better at the ecosystem level.

56 citations


Network Information
Related Institutions (5)
Zoological Society of London
3.7K papers, 201.2K citations

82% related

James Hutton Institute
3.8K papers, 147.1K citations

82% related

Swiss Federal Institute for Forest, Snow and Landscape Research
3.2K papers, 161.6K citations

82% related

Finnish Environment Institute
3.4K papers, 159.6K citations

81% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202111
20206
20191
20181
20172
20164