scispace - formally typeset
Search or ask a question

Showing papers in "ACS Macro Letters in 2022"


Journal ArticleDOI
TL;DR:
Abstract: Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.

40 citations


Journal ArticleDOI
TL;DR: In this paper , a class of seven-membered ring carbonates containing trans-cyclohexyl fused rings was used for ring-opening polymerization (ROP) with turnover frequency (TOF) up to 6 × 105 h-1 and catalyst loading down to 50 ppm.
Abstract: Monomer design plays an important role in the development of polymers with desired thermal properties and chemical recyclability. Here we prepared a class of seven-membered ring carbonates containing trans-cyclohexyl fused rings. These monomers showed excellent activity for ring-opening polymerization (ROP) with turnover frequency (TOF) up to 6 × 105 h-1 and catalyst loading down to 50 ppm, which yielded high-molecular-weight polycarbonates (Mn up to 673 kg/mol) with great thermostability (Td > 300 °C). Ultimately, the resulting polycarbonates can completely depolymerize into their corresponding cyclic dimers that can repolymerize to synthesize the starting polymers in moderate yields, demonstrating a potential route to achieve chemical recycling. Postfunctionalization of the unsaturated polycarbonate was conducted through cross-linking reaction and "click" reaction under UV irradiation.

38 citations


Journal ArticleDOI
TL;DR: The facile fabrication of a series of polycatechol nanoparticles via a general and robust strategy based on the one-step oxidation reaction that could facilitate the precise size control of the resulting nanoparticles and also allow the successful transfer and amplification of microscopic monomer function into macroscopic poly catechol material properties.
Abstract: While low-dimensional (1D and 2D) polycatechol materials have been widely described for a range of biomedical and surface engineering applications, very few examples have been explored that focus on the construction of functional polycatechol nanoparticles. Herein, we report the facile fabrication of a series of polycatechol nanoparticles via a general and robust strategy based on the one-step oxidation reaction. IO3--induced catechol redox chemistry could facilitate the precise size control of the resulting nanoparticles and also allow the successful transfer and amplification of microscopic monomer function into macroscopic polycatechol material properties. The ease, facileness, and controllability of such a one-step fabrication process could highly promote the development of polycatechol nanomaterials for various applications.

26 citations


Journal ArticleDOI
TL;DR: In this article , the role of dynamic covalent chemistry on self-assembly is highlighted in the context of crystallization and nanophase separation, as well as the ability of dynamic bond exchange to manipulate molecular transport and viscoelasticity.
Abstract: Vitrimers have been investigated in the past decade for their promise as recyclable, reprocessable, and self-healing materials. In this Viewpoint, we focus on some of the key open questions that remain regarding how the molecular-scale chemistry impacts macroscopic physical chemistry. The ability to design temperature-dependent complex viscoelastic spectra with independent control of viscosity and modulus based on knowledge of the dynamic bond and polymer chemistry is first discussed. Next, the role of dynamic covalent chemistry on self-assembly is highlighted in the context of crystallization and nanophase separation. Finally, the ability of dynamic bond exchange to manipulate molecular transport and viscoelasticity is discussed in the context of various applications. Future directions leveraging dynamic covalent chemistry to provide insights regarding fundamental polymer physics as well as imparting functionality into polymers are discussed in all three of these highlighted areas.

24 citations


Journal ArticleDOI
TL;DR: In this paper , the authors presented a simple, catalyst-free, fast method to synthesize a hindered-urea-based dynamic cross-linker that can undergo a free radical polymerization with vinyl-type monomers or polymers to form reprocessable CANs.
Abstract: Conventional cross-linked polymers cannot be reprocessed because of the presence of permanent covalent cross-links, preventing reuse and recycling. Covalent adaptable networks (CANs) employ dynamic covalent bonds that undergo dynamic reactions under external stimulus, allowing recyclability of these network materials. Hindered urea chemistry is one of the recently discovered dissociative dynamic chemistries. While hindered urea bonds have traditionally been exploited in the synthesis of step-growth type CANs, the use of hindered urea bonds in the synthesis of chain-growth-type dynamic networks has only been narrowly explored. Here, we present a simple, catalyst-free, fast method to synthesize a hindered-urea-based dynamic cross-linker that can undergo a free radical polymerization with vinyl-type monomers or polymers to form reprocessable CANs. Using this cross-linker, we developed dynamic polymethacrylate networks that can be (re)processed at 80 °C. These dynamic covalent networks exhibit full recovery of cross-link density after multiple recycling steps; they are only the second chain-growth network synthesized directly and exclusively from carbon-carbon double bond monomers to demonstrate such recovery. Unlike other dissociative dynamic polymer networks, polymethacrylate networks that contain dissociative dynamic hindered urea bonds do not flow and maintain their network structure even at high temperature (300 °C). Despite its relatively fast reprocessability, the network showed delayed and extremely slow stress relaxation at the processing temperature. This work offers a simple approach to obtain reprocessable addition-type networks based on hindered urea bonds while revealing the limitations of stress relaxation experiments in relationship to the processability of some dynamic polymer networks.

21 citations


Journal ArticleDOI
TL;DR: In this article , a dual photoredox catalytic system was developed to mediate photo-induced atom transfer radical polymerization (ATRP) under red-light irradiation, which is comprised of a Cu catalyst to control the polymerization via ATRP equilibrium and a photocatalyst, such as zinc(II) tetraphenylporphine or zinc( II) phthalocyanine, to generate the activator CuI species under red light irradiation.
Abstract: Despite advances in photochemical atom transfer radical polymerization (photoATRP), these systems often rely on the use of UV light for the activation/generation of the copper-based catalytic species. To circumvent the problems associated with the UV light, we developed a dual photoredox catalytic system to mediate photoinduced ATRP under red-light irradiation. The catalytic system is comprised of a Cu catalyst to control the polymerization via ATRP equilibrium and a photocatalyst, such as zinc(II) tetraphenylporphine or zinc(II) phthalocyanine, to generate the activator CuI species under red-light irradiation. In addition, this system showed oxygen tolerance due to the consumption of oxygen in the photoredox reactions, yielding well-controlled polymerizations without the need for deoxygenation processes.

20 citations


Journal ArticleDOI
TL;DR: In this paper , a photocatalytic strategy for cleaving carbon-based polymer backbones is described, where the N-(acyloxy)phthalimide comonomer, upon reception of an electron from a singleelectron transfer (SET) donor, undergoes decarboxylation to yield a backbone-centered radical.
Abstract: Polymeric materials comprised of all-carbon backbones are ubiquitous to modern society due to their low cost, impressive robustness, and unparalleled physical properties. It is well-known that these materials often persist long beyond their intended usage lifetime, resulting in environmental accumulation of plastic waste. A substantial barrier to the breakdown of these polymers is the relative chemical inertness of carbon-carbon bonds within their backbone. Herein, we describe a photocatalytic strategy for cleaving carbon-based polymer backbones. Inclusion of a low mole percent of a redox-active comonomer allows for a dramatic reduction in polymer molecular weight upon exposure to light. The N-(acyloxy)phthalimide comonomer, upon reception of an electron from a single-electron transfer (SET) donor, undergoes decarboxylation to yield a backbone-centered radical. Depending on the nature of this backbone radical, as well as the substitution on neighboring monomer repeat units, a β-scission pathway is thermodynamically favored, resulting in backbone cleavage. In this way, polymers with an all-carbon backbone may be degraded at ambient temperature under metal-free conditions.

18 citations


Journal ArticleDOI
TL;DR: Recently, the development of reversible deactivation radical polymerization (RDRP) and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties as discussed by the authors .
Abstract: Over the past three decades, the development of reversible deactivation radical polymerizations (RDRP), and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties. External mediation, improved tolerance to oxygen, and increased reaction volumes for higher synthetic output are some of the many noteworthy technical improvements. The development of RDRPs in solution was paralleled by their application on solid substrates to synthesize surface-grafted "polymer brushes" via surface-initiated RDRP (SI-RDRP). This Viewpoint paper provides a current perspective on recent developments in SI-RDRP methods that are tolerant to oxygen, especially highlighting those that could potentially enable scaling up of the synthesis of brushes for the functionalization of technologically relevant materials.

16 citations


Journal ArticleDOI
TL;DR: In this paper , the polymerization thermodynamics for a series of thiolactone monomers through systematic changes to substitution patterns and sulfur heteroatom incorporation were investigated, leading to monomers that display high conversions to polymer at near-ambient temperatures, while maintaining low ceiling temperatures (Tc).
Abstract: A central challenge in the development of next-generation sustainable materials is to design polymers that can easily revert back to their monomeric starting material through chemical recycling to monomer (CRM). An emerging monomer class that displays efficient CRM are thiolactones, which exhibit rapid rates of polymerization and depolymerization. This report details the polymerization thermodynamics for a series of thiolactone monomers through systematic changes to substitution patterns and sulfur heteroatom incorporation. Additionally, computational studies highlight the importance of conformation in modulating the enthalpy of polymerization, leading to monomers that display high conversions to polymer at near-ambient temperatures, while maintaining low ceiling temperatures (Tc). Specifically, the combination of a highly negative enthalpy (-19.3 kJ/mol) and entropy (-58.4 J/(mol·K)) of polymerization allows for a monomer whose equilibrium polymerization conversion is very sensitive to temperature.

16 citations


Journal ArticleDOI
TL;DR: In this paper , self-blown nonisocyanate polyurethane (NIPU) foams are fabricated by capitalizing on the divergent chemistries of amines with cyclic carbonates.
Abstract: We report an approach to fabricate self-blown nonisocyanate polyurethane (NIPU) foams by capitalizing on the divergent chemistries of amines with cyclic carbonates─creating the polymer network─and thiolactone─delivering in situ a thiol that generates the blowing agent (CO2) by reaction with a cyclic carbonate. Multiple linkages (hydroxyurethanes, thioethers, and amides) are created within the polymer network by this domino process. This one-pot methodology furnishes flexible to rigid foams with open-cell morphology at moderate temperature. The foams are easily repurposed into films or structural composites by thermal treatment, showing the first example of recyclable NIPU foams. Remarkably, both the formation and the recycling of the thermoset foams do not necessarily require the use of a catalyst. This facile and robust process is opening new avenues for designing more sustainable PU foams and offers new end-of-life options by facile material repurposing.

15 citations


Journal ArticleDOI
TL;DR: The glycosylated rods were shown to give dose-dependent responses against recombinant truncated SARS-CoV-2 spike protein, and the responses were further correlated using primary patient swab samples, highlighting the utility of polymer tethering of glycans for plasmonic biosensors of infection.
Abstract: The COVID-19 pandemic has highlighted the need for innovative biosensing, diagnostic, and surveillance platforms. Here we report that glycosylated, polymer-stabilized, gold nanorods can bind the SARS-CoV-2 spike protein and show correlation to the presence of SARS-CoV-2 in primary COVID-19 clinical samples. Telechelic polymers were prepared by reversible addition–fragmentation chain-transfer polymerization, enabling the capture of 2,3-sialyllactose and immobilization onto gold nanorods. Control experiments with a panel of lectins and a galactosamine-terminated polymer confirmed the selective binding. The glycosylated rods were shown to give dose-dependent responses against recombinant truncated SARS-CoV-2 spike protein, and the responses were further correlated using primary patient swab samples. The essentiality of the anisotropic particles for reducing the background interference is demonstrated. This highlights the utility of polymer tethering of glycans for plasmonic biosensors of infection.

Journal ArticleDOI
TL;DR: In this paper , a tetra(4-pyridylphenyl)ethylene (TPE-4N) luminogen with pH-responsive aggregation-induced emission (AIE) active hydrogel was used to fabricate an anisotropic bilayer soft actuator based on strong interfacial adhesion with acrylic acid (AA) gels.
Abstract: Development of soft actuators with complex practical functions is significant for imitating the behaviors of living organisms. However, it is still a challenge to fabricate artificial soft actuators with jellyfish-like synergistic deformation and fluorescence color change (SDFC) and autonomous dynamic behavior, but such a system could obviously endow the classic soft actuators with more functions. Herein, we proposed to utilize tetra(4-pyridylphenyl)ethylene (TPE-4N) luminogen with pH-responsive aggregation-induced emission (AIE) to fabricate the AIE active hydrogel, which could be further employed to obtain an anisotropic bilayer soft actuator based on strong interfacial adhesion with acrylic acid (AA) gels. Furthermore, artificial flower-shape actuators showing SDFC behaviors were demonstrated. On the basis of these findings, jellyfish-inspired autonomous gel actuators driven by a pH oscillator have been fabricated, in which periodical SDFC behaviors completely regulated by the system itself without repetitive on/off switches of external stimuli were well synchronized with the pH oscillator. The described combination of nonlinear chemistry and responsive hydrogels actuator opens pathways toward out-of-equilibrium SDFC devices with autonomous behavior useful for biomimetic fields.

Journal ArticleDOI
TL;DR: In this paper , photo-induced iron-catalyzed atom transfer radical polymerization (ATRP) was used for the synthesis of renewable polymers with controlled molecular weights and narrow molar mass distributions.
Abstract: Producing polymers from renewable resources via more sustainable approaches has become increasingly important. Herein we present the polymerization of monomers obtained from biobased renewable resources, employing an environmentally friendly photoinduced iron-catalyzed atom transfer radical polymerization (ATRP) in low-toxicity solvents. We demonstrate that renewable monomers can be successfully polymerized into sustainable polymers with controlled molecular weights and narrow molar mass distributions (Đ as low as 1.17). This is in contrast to reversible addition–fragmentation chain-transfer (RAFT) polymerization, arguably the most commonly employed method to polymerize biobased monomers, which led to poorer molecular weight control and higher dispersities for these specific monomers (Đs ∼ 1.4). The versatility of our approach was further highlighted by the temporal control demonstrated through intermittent “on/off” cycles, controlled polymerizations of a variety of monomers and chain lengths, oxygen-tolerance, and high end-group fidelity exemplified by the synthesis of block copolymers. This work highlights photoinduced iron-catalyzed ATRP as a powerful tool for the synthesis of renewable polymers.

Journal ArticleDOI
TL;DR: In this article , triethylenetetramine was added to the curing VU formulation to ensure that all primary amines reacted to form enaminone cross-links, resulting in a network without reactive primary amine chain-ends.
Abstract: We present a simple method for increasing the reprocessability of vinylogous urethane (VU) vitrimers while decreasing the possibility of creep deformation at lower temperatures. In particular, varying amounts of triethylenetetramine were added as a comonomer to the curing VU formulation to ensure that all of the primary amines reacted to form enaminone cross-links, resulting in a network without reactive primary amine chain-ends. As a result, transamination was significantly slowed down because secondary amines are much less reactive to VU exchange. On the other hand, at higher temperatures, pendent primary amines can be released via a dynamic, endothermic exchange with a nearby less-reactive secondary amine, thereby (re)activating material flow. As a result, ambivalent viscoelastic behavior could be achieved without depolymerization by dynamically releasing pendent primary amines from vinylogous urethane polymer chains. Through careful comonomer selection, VU vitrimers with low viscosity at processing temperatures and at the same time high viscosity at service temperatures could be prepared without the use of catalysts or additives, leveraging the synergistic effects of mildly reactive functionalities through neighboring group participation.

Journal ArticleDOI
TL;DR: In this article , the authors used a single time-resolved diffusion nuclear magnetic resonance (NMR) experiment to simultaneously study the kinetics and molecular weight evolution during a photopolymerization, with in situ irradiation inside the NMR instrument.
Abstract: Online, high-throughput molecular weight analysis of polymerizations is rare, with most studies relying on tedious sampling techniques and batchwise postanalysis. The ability to track both monomer conversion and molecular weight evolution in real time could underpin precision polymer development and facilitate study of rapid polymerization reactions. Here, we use a single time-resolved diffusion nuclear magnetic resonance (NMR) experiment to simultaneously study the kinetics and molecular weight evolution during a photopolymerization, with in situ irradiation inside the NMR instrument. As a model system, we used a photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The data allow diffusion coefficients and intensities to be calculated every 14 s from which the polymer size and monomer conversion can be extracted. Key to this approach is (1) the use of shuffled gradient amplitudes in the diffusion NMR experiment to access reactions of any rate, (2) the addition of a relaxation agent to increase achievable time resolution and, (3) a sliding correction that accounts for viscosity changes during polymerization. Diffusion NMR offers a uniquely simple, translatable handle for online monitoring of polymerization reactions.

Journal ArticleDOI
TL;DR: In this article , the authors investigate the effects of diol structure and salt additives on the rate of boronic acid-diol bond exchange, binding affinity, and the mechanical properties of the corresponding polymer networks.
Abstract: In dynamic materials, the reversible condensation between boronic acids and diols provides adaptability, self-healing ability, and responsiveness to small molecules and pH. The thermodynamics and kinetics of bond exchange determine the mechanical properties of dynamic polymer networks. Here, we investigate the effects of diol structure and salt additives on the rate of boronic acid–diol bond exchange, binding affinity, and the mechanical properties of the corresponding polymer networks. We find that proximal amides used to conjugate diols to polymers and buffering anions induce significant rate acceleration, consistent with an internal and external catalysis, respectively. This rate acceleration is reflected in the stress relaxation of the gels. These findings contribute to the fundamental understanding of the boronic ester dynamic bond and offer molecular strategies to tune the macromolecular properties of dynamic materials.

Journal ArticleDOI
TL;DR: A general and versatile synthetic strategy for producing practical quantities of a wide range of phenyl-group-terminated hetero- and homotelechelic semicrystalline polyethenes and amorphous atactic and semicrystine isotactic poly(α-olefins) is reported in this paper .
Abstract: A general and versatile synthetic strategy for producing practical quantities of a wide range of phenyl-group-terminated hetero- and homotelechelic semicrystalline polyethenes and amorphous atactic and semicrystalline isotactic poly(α-olefins) is reported. The phenyl groups serve as synthons for functionalities of additional classes of telechelic polyolefins that can be "unmasked" through simple high yielding postpolymerization reactions. A demonstration of the value of these materials as building blocks for structural classes of polyolefin-based synthetic polymers was provided by syntheses of well-defined polyolefin-polyester di- and triblock copolymers that were shown to adopt microphase-segregated nanostructured mesophases in the condensed phase.

Journal ArticleDOI
TL;DR: In this article , a photoinitiator system based on riboflavin (Rf), triethanolamine, and multiwalled carbon nanobutes (MWCNTs) is presented for visible-light-induced photopolymerization of acrylic monomers.
Abstract: A new photoinitiator system (PIS) based on riboflavin (Rf), triethanolamine, and multiwalled carbon nanobutes (MWCNTs) is presented for visible-light-induced photopolymerization of acrylic monomers. Using this PIS, photopolymerization of acrylamide and other acrylic monomers was quantitative in seconds. The intervention mechanism of CNTs in the PIS was studied deeply, proposing a surface interaction of MWCNTs with Rf which favors the radical generation and the initiation step. As a result, polyacrylamide/MWCNT hydrogel nanocomposites could be obtained with varying amounts of CNTs showing excellent mechanical, thermal, and electrical properties. The presence of the MWCNTs negatively influences the swelling properties of the hydrogel but significantly improves its mechanical properties (Young modulus values) and electric conductivity. The new PIS was tested for 3D printing in a LCD 3D printer. Due to the fast polymerizations, 3D-printed objects based on the conductive polyacrylamide/CNT nanocomposites could be manufactured in minutes.

Journal ArticleDOI
TL;DR: In this article , the SG structure can be stabilized by the synergistic effect of released packing frustration and stretched bridging block in AB-type block copolymers, and a simple linear BABAB pentablock copolymer is successfully devised.
Abstract: Although the double-gyroid (DG) structure has been commonly formed from the self-assembly of block copolymers, the single-gyroid (SG) structure is rarely reported. Moreover, the SG structure even shows better performance than DG in some optical applications. How to prepare the SG structure has become an attractive but challenging topic. We speculate that the SG structure can be stabilized by the synergistic effect of released packing frustration and stretched bridging block in AB-type block copolymers. Accordingly, we propose the minimum conditions for the design of architecture that enables the two mechanisms simultaneously. Following these conditions, a simple linear BABAB pentablock copolymer is successfully devised. SCFT calculations confirm that the SG phase can be stabilized by tailoring the architecture. Our work is hopeful to promote relevant experimental studies for engineering the unusual SG structure.

Journal ArticleDOI
TL;DR: In this paper , the role of irradiation wavelength in thermal depolymerization of polymers prepared by reversible-addition-fragmentation chain-transfer (RAFT) polymerization was investigated.
Abstract: Controlled radical polymerization techniques enable the synthesis of polymers with predetermined molecular weights, narrow molecular weight distributions, and controlled architectures. Moreover, these polymerization approaches have been routinely shown to result in retained end-group functionality that can be reactivated to continue polymerization. However, reactivation of these end groups under conditions that instead promote depropagation is a viable route to initiate depolymerization and potentially enable closed-loop recycling from polymer to monomer. In this report, we investigate light as a trigger for thermal depolymerization of polymers prepared by reversible-addition-fragmentation chain-transfer (RAFT) polymerization. We study the role of irradiation wavelength by targeting the n → π* and π → π* electronic transitions of the thiocarbonylthio end-groups of RAFT-generated polymers to enhance depolymerization via terminal bond homolysis. Specifically, we explore depolymerization of polymers with trithiocarbonate, dithiocarbamate, and p-substituted dithiobenzoate end groups with the purpose of increasing depolymerization efficiency with light. As the wavelength decreases from the visible range to the UV range, the rate of depolymerization is dramatically increased. This method of photoassisted depolymerization allows up to 87% depolymerization efficiency within 1 h, results that may further the advancement of recyclable materials and life-cycle circularity.

Journal ArticleDOI
Meng Wang, Hui Zou, Wenbing Liu, Na Liu, Zong-Quan Wu 
TL;DR: In this paper , an amphiphilic bottlebrush polymer containing brush-shaped PS and polyethylene glycol was synthesized by polymerization of the diazoacetate macromonomer of PEG (2-PEG) using Pd(II)-terminated (1-PSn)m as the macroinitiator.
Abstract: In this work, we reported a strategy to synthesize well-defined bottlebrush polymers. Diazoacetate macromonomers of polystyrene (1-PSn) with controlled molecular weights were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diazo can tolerate the RAFT polymerization conditions and remained on the chain end of the yielded PS macromonomer. The terminal diazo groups of the macromonomer were polymerized by the allyl PdCl/L catalyst to afford well-defined bottlebrush polymers ((1-PSn)ms) carrying a side chain on each backbone atom. Meanwhile, an amphiphilic bottlebrush polymer containing brush-shaped PS and polyethylene glycol (PEG) was synthesized by polymerization of the diazoacetate macromonomer of PEG (2-PEG) using Pd(II)-terminated (1-PSn)m as the macroinitiator. The yielded amphiphilic (1-PS30)50-b-(2-PEG)100 could self assemble into a well-defined core-shell micelle in aqueous solutions. The hydrodynamic diameter of the micelle was ca. 146 nm and had good biocompatibility. These results indicate the micelles have great potential in drug delivery.

Journal ArticleDOI
TL;DR: In this article , photoinduced electron/energy transfer (PET)-reversible addition-fragmentation chain transfer polymerization (RAFT) and conventional photoinitiated RAFT were used to synthesize polymer networks.
Abstract: Photoinduced electron/energy transfer (PET)-reversible addition-fragmentation chain transfer polymerization (RAFT) and conventional photoinitiated RAFT were used to synthesize polymer networks. In this study, two different metal catalysts, namely, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) and zinc tetraphenylporphyrin (ZnTPP), were selected to generate two different catalytic pathways, one with Ir(ppy)3 proceeding through an energy-transfer pathway and one with ZnTPP proceeding through an electron-transfer pathway. These PET-RAFT systems were contrasted against a conventional photoinitated RAFT process. Mechanically robust materials were generated. Using bulk swelling ratios and degradable cross-linkers, the homogeneity of the networks was evaluated. Especially at high primary chain length and cross-link density, the PET-RAFT systems generated more uniform networks than those made by conventional RAFT, with the electron transfer-based ZnTPP giving superior results to those of Ir(ppy)3. The ability to deactivate radicals either by RAFT exchange or reversible coupling in PET RAFT was proposed as the mechanism that gave better control in PET-RAFT systems.

Journal ArticleDOI
TL;DR: In this paper , a dynamically racemic helical copolymer composed of an achiral biphenylylacetylene (BPA) bearing methoxymethoxy groups at the 2,2′-positions was found to fold into an excess one-handed helix with significant amplification of the helicity in the presence of a small amount of optically active amines.
Abstract: A dynamically racemic helical copolymer composed of an achiral biphenylylacetylene (BPA) bearing methoxymethoxy groups at the 2,2′-positions and 1 mol % of an achiral BPA carrying 2-carboxy-2′-methoxymethoxy groups at the biphenyl pendants was found to fold into an excess one-handed helix with significant amplification of the helicity in the presence of a small amount of optically active amines. The induced macromolecular helicity was retained (“memorized”) after removal of the chiral amines. The copolymer had a significant sensitivity for detecting the chirality of chiral amines with a sensitivity more than 10000-fold higher than that of the corresponding homopolymers with no carboxy group, thus showing Cotton effects even in the presence of a 0.01 equiv of an optically active amine. The effects of the substituents at the 4′-position of the biphenyl pendants of the copolymers and the structures of the chiral amines on the macromolecular helicity induction were also investigated.

Journal ArticleDOI
TL;DR: LLPS has potential as a concise model system for the understanding of the interaction between nucleic acids and natural MLOs and for studying the molecular mechanism of diseases involving MLOs.
Abstract: Liquid-liquid phase separation (LLPS) emerges as a fundamental underlying mechanism for the biological organization, especially the formation of membraneless organelles (MLOs) hosting intrinsically disordered proteins (IDPs) as scaffolds. Nucleic acids are compositional biomacromolecules of MLOs with wide implications in normal cell functions as well as in pathophysiology caused by aberrant phase behavior. Exploiting a minimalist artificial membraneless organelles (AMLO) from LLPS of IDP-mimicking polymer-oligopeptide hybrid (IPH), we investigated the effect of nucleic acids with different lengths and sequence variations on AMLO. The behavior of this AMLO in the presence of DNAs and RNAs resembled natural MLOs in multiple aspects, namely, modulated propensity of formation, morphology, liquidity, and dynamics. Both DNA and RNA could enhance the LLPS of AMLO, while compared with RNA, DNA had a higher tendency to solidify and diminish dynamics thereof. These findings suggest its potential as a concise model system for the understanding of the interaction between nucleic acids and natural MLOs and for studying the molecular mechanism of diseases involving MLOs.

Journal ArticleDOI
TL;DR: In this article , the authors reported the local chain trajectory of 13C-labeled semicrystalline polymer in an extreme case of rapidly quenched glassy state as well as thermodynamically stable crystals formed via different pathways from glass and melt and concluded that folding occurs prior to crystallization and melting and cold crystallization do not induce additional folding but proceed with rearrangements of polymer chains in the existing templates.
Abstract: There are long-standing debates in crystallization mechanism of polymer chains at the molecular levels: Which comes first, chain folding or lamellae formation during crystallization? In this study, we report the local chain trajectory of 13C-labeled semicrystalline polymer in an extreme case of rapidly quenched glassy state as well as thermodynamically stable crystals formed via different pathways from glass and melt. Magnetically dipole interactions do not require a long-range order of molecular objects and thus enable us to trace the local chain trajectory of polymer chains even in a glassy state. To accurately characterize the local chain trajectory of polymer glass, the natural abundance effect on 13C-13C double-quantum (DQ) nuclear magnetic resonance (NMR) signal is re-examined using extended chain conformation. As results, it is found that glassy chains adopt the same adjacent re-entry structure (adjacent re-entry number, n = 1) with the melt- and cold-grown crystals. From these results, it is concluded that (i) folding occurs prior to crystallization and (ii) melt and cold crystallization do not induce additional folding but proceed with rearrangements of polymer chains in the existing templates.

Journal ArticleDOI
TL;DR: Barbier CARP as discussed by the authors is an all-in-one strategy where anionic and radical characteristics are merged into one polymerization species, and it has been successfully applied to a wide variety of organohalides.
Abstract: The developments of the living alkene polymerization method have achieved great progress and enabled the precise synthesis of important polyalkenes with controlled molecular weight, molecular weight distribution, and architecture through an anionic, cationic or radical strategy. However, it is still challenging to develop a living alkene polymerization method through an all-in-one strategy where anionic and radical characteristics are merged into one polymerization species. Here, a versatile living polymerization method is reported by introducing a well-established all-in-one covalent-anionic-radical Barbier strategy into a living polymerization. Through this living covalent-anionic-radical Barbier polymerization (Barbier CARP), narrow distributed polystyrenes, with Đ as low as 1.05, are successfully prepared under mild conditions with a full monomer conversion by using wide varieties of organohalides, for example, alkyl, benzyl, allyl, and phenyl halides, as initiators with Mg in one pot. This living covalent-anionic-radical polymerization via a Barbier strategy expands the methodology library of polymer chemistry and enables living polymerization with an unconventional polymerization mode.

Journal ArticleDOI
TL;DR: In this paper , a variety of poly(methyl methacrylate) materials made by reversible addition-fragmentation chain-transfer (RAFT) polymerization and terminated by various end groups (dithiobenzoate, trithiocarbonate, and pyrazole carbodithioate).
Abstract: Reversing reversible deactivation radical polymerization (RDRP) to regenerate the original monomer is an attractive prospect for both fundamental research and industry. However, current depolymerization strategies are often applied to highly heat-tolerant polymers with a specific end-group and can only be performed in a specific solvent. Herein, we depolymerize a variety of poly(methyl methacrylate) materials made by reversible addition–fragmentation chain-transfer (RAFT) polymerization and terminated by various end groups (dithiobenzoate, trithiocarbonate, and pyrazole carbodithioate). The effect of the nature of the solvent on the depolymerization conversion was also investigated, and key solvents such as dioxane, xylene, toluene, and dimethylformamide were shown to facilitate efficient depolymerization reactions. Notably, our approach could selectively regenerate pure heat-sensitive monomers (e.g., tert-butyl methacrylate and glycidyl methacrylate) in the absence of previously reported side reactions. This work pushes the boundaries of reversing RAFT polymerization and considerably expands the chemical toolbox for recovering starting materials under relatively mild conditions.

Journal ArticleDOI
TL;DR: This SNP can generate a synergistic triple therapeutic effect of photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy (CT) with excellent biocompatibility.
Abstract: An anionic water-soluble [2]biphenyl-extended-pillar[6]arenes modified with eight ammonium salt ions (AWBpP6) was successfully synthesized to establish a drug-drug conjugate supramolecular nanoprodrug (SNP) with a high drug-loading capacity. This SNP can generate a synergistic triple therapeutic effect of photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy (CT; i.e., PDT-PTT-CT) with excellent biocompatibility.

Journal ArticleDOI
TL;DR: In this paper , a group of discrete ABA triblock copolymers with varying composition and symmetry were modularly synthesized through a combination of iterative growth methods and efficient coupling reactions.
Abstract: The inherent statistical heterogeneities associated with chain length, composition, and architecture of synthetic block copolymers compromise the quantitative interpretation of their self-assembly process. This study scrutinizes the contribution of molecular architecture on phase behaviors using discrete ABA triblock copolymers with precise chemical structure and uniform chain length. A group of discrete triblock copolymers with varying composition and symmetry were modularly synthesized through a combination of iterative growth methods and efficient coupling reactions. The symmetric ABA triblock copolymers self-assemble into long-range ordered structures with expanded domain spacings and enhanced phase stability, compared with the diblock counterparts snipped at the middle point. By tuning the relative chain length of two end blocks, the molecular asymmetry reduces the packing frustration, and thus increases the order-to-disorder transition temperature and enlarges the domain sizes. This study would serve as a quantitative model system to correlate the experimental observations with the theoretical assessments and to provide quantitative understandings for the relationship between molecular architecture and self-assembly.

Journal ArticleDOI
TL;DR: In this article , the glass transition temperature (Tg) of polystyrene (PS) ultrathin films upon solid substrates modified with a cross-linked PS (CLPS) layer has been investigated.
Abstract: Due to the importance of the interface in the segmental dynamics of supported macromolecule ultrathin films, the glass transition temperature (Tg) of polystyrene (PS) ultrathin films upon solid substrates modified with a cross-linked PS (CLPS) layer has been investigated. The results showed that the Tg of the thin PS films on a silica surface with a ∼5 nm cross-linked layer increased with reducing film thickness. Meanwhile, the increase in Tg of the thin PS films became more pronounced with increasing the cross-linking density of the layer. For example, a 20 nm thick PS film supported on CLPS with 1.8 kDa of cross-linking degree exhibited a ∼35 and ∼50 K increase in Tg compared to its bulk and that on neat SiO2 substrate, respectively. Such a large Tg elevation for the ultrathin PS films was attributed to the interfacial aggregation states in which chains diffused through nanolevel voids formed in the cross-linked layer to the SiO2-Si surface. In such a situation, the chains were topologically constrained in the cross-linked layer with less mobility. These results offer us the opportunity to tailor interfacial effects by changing the degree of cross-linking, which has great potential application in many polymer nanocomposites.