scispace - formally typeset
Search or ask a question

Showing papers in "Artificial Satellites in 2020"


Journal ArticleDOI
TL;DR: In this article, the relativistic effects of the geodetic precession and nutation in the rotation of the inner satellites of Jupiter's inner satellites were investigated. But the most significant effects were not considered in this paper.
Abstract: Abstract The most significant relativistic effects (the geodetic precession and the geodetic nutation, which consist of the effect of the geodetic rotation) in the rotation of Jupiter’s inner satellites were investigated in this research. The calculations of the most essential secular and periodic terms of the geodetic rotation were carried out by the method for studying any bodies of the solar system with long-time ephemeris. As a result, for these Jupiter’s satellites, these terms of their geodetic rotation were first determined in the rotational elements with respect to the International Celestial Reference Frame (ICRF) equator and the equinox of the J2000.0 and in the Euler angles relative to their proper coordinate systems. The study shows that in the solar system there are objects with significant geodetic rotation, due primarily to their proximity to the central body, and not to its mass.

6 citations


Journal ArticleDOI
TL;DR: Combined GPS/GLONASS PPP achieves better positioning accuracy in horizontal and three-dimensional (3D) accuracy compared with GPS-only and GLONASS-only PPP solutions.
Abstract: Abstract In addition to Global Positioning System (GPS) constellation, the number of Global Navigation Satellite System (GLONASS) satellites is increasing; it is now possible to evaluate and analyze the position accuracy with both the GPS and GLONASS constellation. In this article, statistical analysis of static precise point positioning (PPP) using GPS-only, GLONASS-only, and combined GPS/GLONASS modes is evaluated. Observational data of 10 whole days from 10 International GNSS Service (IGS) stations are used for analysis. Position accuracy in east, north, up components, and carrier phase/code residuals is analyzed. Multi-GNSS PPP open-source package is used for the PPP performance analysis. The analysis also provides the GNSS researchers the understanding of the observational data processing algorithm. Calculation statistics reveal that standard deviation (STD) of horizontal component is 3.83, 13.80, and 3.33 cm for GPS-only, GLONASS-only, and combined GPS/GLONASS PPP solutions, respectively. Combined GPS/GLONASS PPP achieves better positioning accuracy in horizontal and three-dimensional (3D) accuracy compared with GPS-only and GLONASS-only PPP solutions. The results of the calculation show that combined GPS/GLONASS PPP improves, on an average, horizontal accuracy by 12.11% and 60.33% and 3D positioning accuracy by 10.39% and 66.78% compared with GPS-only and GLONASS-only solutions, respectively. In addition, the results also demonstrate that GPS-only solutions show an improvement of 54.23% and 62.54% compared with GLONASS-only PPP mode in horizontal and 3D components, respectively. Moreover, residuals of GLONASS ionosphere-free code observations are larger than the GPS code residuals. However, phase residuals of GPS and GLONASS phase observations are of the same magnitude.

5 citations



Journal ArticleDOI
TL;DR: This article investigates the behavior of the three models in correcting the ionospheric delay for three stations at different latitudes during 3 months of different states of ionosphere activity, comparing with International GNSS Service-Global Ionospheric Maps (IGS-GIMs).
Abstract: Abstract The GNSS observations suffer from different types of errors that could affect the achieved positioning accuracy based on the receiver type used. Single-frequency receivers are widely used worldwide because of its low cost. The ionospheric delay considers the most challenging error for single-frequency GNSS observations. All satellite navigation systems, except GLONASS, are advising their users to correct for the ionospheric delay using a certain model. Those models’ coefficients are sent to users in the system’s navigation message. These models are different in their accuracy and behavior based on its foundation theory as well as the updating rate of their coefficients. The GPS uses Klobuchar model for mitigating the ionospheric delay. BeiDou system (BDS-2) adopts a slightly modified Klobuchar model that resembles GPS ICA (Ionospheric Correction Algorithm) with eight correction parameters but is formulated in a geographic coordinate system with different coefficients in origin and updating rate. Galileo system uses a different model (NeQuick model). This article investigates the behavior of the three models in correcting the ionospheric delay for three stations at different latitudes during 3 months of different states of ionospheric activity, comparing with International GNSS Service-Global Ionospheric Maps (IGS-GIMs). It is advised from this research’s outputs to use the GPS model for mitigating the ionospheric delay in low-latitude regions during the state of low-and medium-activity ionosphere. It is advised to use the BeiDou model for mitigating the ionospheric delay in mid-latitude regions during different states of ionospheric activity. It is advised to use the Galileo model for mitigating the ionospheric delay in high-latitude regions during different states of ionospheric activity. Also, the Galileo model is recommended for mitigating the ionospheric delay for low-latitude regions during the state of high-activity ionosphere.

2 citations


Journal ArticleDOI
TL;DR: The orbit determination algorithm predicted the satellite position using single station navigation data and the Kolmogorov-Smirnov test used to assess the goodness of fit of the proposed EKF algorithm for orbit prediction was found to be significant at 1% level of significance.
Abstract: Abstract Ephemerides are essential for the satellite positioning in Global Navigation Satellite Systems (GNSS) user receivers. Acquisition of navigation data and ephemeris parameters are difficult in remote areas as well as in challenging environments. Statistical orbit determination techniques can help to predict the orbital parameters in the absence of navigation data. The present study is a first step towards the solution for generating orbital parameters and predicting the satellite positions in the absence of navigation data for satellites in NavIC constellation. The orbit determination algorithm predicted the satellite position using single station navigation data. The perturbations affecting the satellite orbits in NavIC constellation were also studied and an algorithm using perturbation force models is proposed for the satellites in NavIC constellation. Extended Kalman Filter (EKF) was used to address the non-linear dynamics model of the perturbation forces and distance of the ground station from the centre of Earth was used as measurement to solve the measurement equation. The satellite orbits were predicted up to 1 hour using the single station navigation data. The root mean square error (RMSE) of 12.59 m and 13.03 m were observed for NavIC satellites in Geosynchronous and Geostationary orbits, respectively, after 1 hour. The Kolmogorov-Smirnov test used to assess the goodness of fit of the proposed EKF algorithm for orbit prediction was found to be significant at 1% level of significance.

2 citations


Journal ArticleDOI
TL;DR: This study aims to evaluate the efficiency of using Global Positioning System (GPS) and GPS/ Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) post-processed kinematic PPP solution for digital elevation model (DEM) production, which is used in earthwork estimation.
Abstract: Abstract In the developing countries, cost-effective observation techniques are very important for earthwork estimation, map production, geographic information systems, and hydrographic surveying. One of the most cost-effective techniques is Precise Point Positioning (PPP); it is a Global Navigation Satellite Systems (GNSS) positioning technique to compute precise positions using only a single GNSS receiver. This study aims to evaluate the efficiency of using Global Positioning System (GPS) and GPS/ Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) post-processed kinematic PPP solution for digital elevation model (DEM) production, which is used in earthwork estimation. For this purpose, a kinematic trajectory has been observed in New Aswan City in an open sky area using dual-frequency GNSS receivers. The results showed that, in case of using GPS/GLONASS PPP solution to estimate volumes, the error in earthwork volume estimation varies between 0.07% and 0.16% according to gridding level. On the other hand, the error in volume estimation from GPS PPP solution varies between 0.40% and 0.99%.

2 citations




Journal ArticleDOI
TL;DR: In this paper, Magion 4 (subsatellite to Interball 1), Polar and CLUSTER were used to register ELF/VLF waves in the outer polar cusps simultaneously with high energy electrons fluxes.
Abstract: Abstract ELF/VLF waves have been registered in the outer polar cusps simultaneously with high energy electrons fluxes by the satellites Magion 4 (subsatellite to Interball 1), Polar and CLUSTER. Further, we discuss similar observations in the different regions of the ionosphere, where DEMETER registered energetic electrons. The DEMETER satellite operating on the nearly polar orbit at the altitude 650 km crossed different regions in the ionosphere. Registrations of ELF/VLF/HF waves together with the energetic electrons in the polar cusp, in the ionospheric trough and over thunderstorm areas are presented in this paper. The three satellites of ESA’s Swarm mission provide additional information on the ELF waves in the mentioned areas together with electron density and temperature. A brief discussion of the generation of these emissions by the so-called “fan instability” (FI) and beam instability is presented.

1 citations


Journal ArticleDOI
TL;DR: Results indicated that the SNR mask set at 36 dB-Hz in every elevation showed the most promising result, which could improve positioning accuracy by up to 46.80% compared to the SPP method.
Abstract: Abstract Nowadays, the use of multi-Global Navigation Satellite System (GNSS) has improved positioning accuracy in autonomous driving, navigation and tracking systems utilized by general users. However, signal quality in urban areas is degraded by poor satellite geometry and severe multipath errors, which may disturb up to a hundred-meter-ranging error as a consequence. In this study, the performance of several satellite selection methods in multipath mitigation was evaluated, based on the concept that better quality signals and more accurate solutions will be obtained, the more multipath signals can be excluded. Three methods were performed and compared: 1) azimuth-dependent elevation mask based on fisheye image technique, 2) receiver autonomous integrity monitoring (RAIM), and 3) signal-to-noise ratio (SNR) mask in the SPP method. To examine the effect of the satellite selection methods on multipath error, the static test (single-point positioning (SPP) in real-time 1 Hz test) was performed in a multipath environment. The preliminary results showed a possible impact on improving the horizontal positioning accuracy of SPP. Among the three techniques assessed in this study, the results indicated that the SNR mask set at 36 dB-Hz in every elevation showed the most promising result. The SNR mask method could improve positioning accuracy by up to 46.80% compared to the SPP method.

1 citations


Journal ArticleDOI
TL;DR: In this article, the authors present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Józefosław (Poland).
Abstract: Abstract Global satellite gravity measurements provide unique information regarding gravity field distribution and its variability on the Earth. The main cause of gravity changes is the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE seems to be the most dominating source of gravity data, sharing a unique set of observations from over 15 years. The results of this experiment are often of interest to geodesists and geophysicists due to its high compatibility with the other methods of gravity measurements, especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can provide conclusions concerning forecasts of subsurface water changes. The aim of this work is to present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław (Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal solutions in comparison with absolute terrestrial gravimetry data and making an attempt to indicate the significance of differences between solutions using various types of filtration (DDK, Gaussian) from selected research centres.

Journal ArticleDOI
TL;DR: Investigation of characterization of positioning errors using GNSS when the Australian satellite-based augmentation system (SBAS) test bed is used and applied distribution analyses suggest that in addition to the normal distribution, logistic, Weibull, and gamma distribution functions can fit the error data in various cases.
Abstract: Abstract Fault detection and exclusion (FDE) is the main task for pre-processing of global navigation satellite system (GNSS) positions and is a fundamental process in integrity monitoring that is needed to achieve reliable positioning for applications such as in intelligent transport systems. A widely used method is the solution separation (SS) algorithm. The FDE in SS traditionally builds the models assuming positioning errors are normally distributed. However, in urban environments, this traditional assumption may no longer be valid. The objective of this study is to investigate this and further examine the performance of alternative distributions, which can be useful for FDE modelling and thus improved navigation. In particular, it investigates characterization of positioning errors using GNSS when the Australian satellite-based augmentation system (SBAS) test bed is used, which comprised different positioning modes, including single-point positioning (SPP) using the L1 global positioning system (GPS) legacy SBAS, the second-generation dual-frequency multi-constellation (DFMC) SBAS service for GPS and Galileo, and, finally, precise point positioning (PPP) using GPS and Galileo observations. Statistical analyses are carried out to study the position error distributions over different possible operational environments, including open sky, low-density urban environment, and high-density urban environment. Significant autocorrelation values are also found over all areas. This, however, is more evident for PPP solution. Furthermore, the applied distribution analyses applied suggest that in addition to the normal distribution, logistic, Weibull, and gamma distribution functions can fit the error data in various cases. This information can be used in building more representative FDE models according to the work environment.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a mathematical model for a new technique establishing a raise in the level of charging in the spacecraft surface that is moving in the Earth's magnetic field and provided by modulating spacecraft's electrostatic charge that induces acceleration via the Lorentz force.
Abstract: Abstract In recent years, studying Lorentz’s force has become a possible good means to control the spacecraft to reduce the fuel cost by modulating spacecraft electrostatic charge (magnetic and electric fields). The generation of Lorentz force is finite by the natural magnetic field and the relative velocity of the spacecraft. Therefore, the Lorentz force cannot fully occur from conventional propulsion technologies. Previous studies are concerned with studying Lorentz’s strength in the magnetic field only. In this work, we developed a mathematical model for a new technique establishing a raise in the level of charging in the spacecraft surface that is moving in the Earth’s magnetic field and provided by modulating spacecraft’s electrostatic charge that induces acceleration via the Lorentz force. The acceleration will be used to find the relationship between capacitance and power required to minimize the consumption of control energy used in such cases or to replace the usual control thruster by Lorentz force.