scispace - formally typeset
Search or ask a question
JournalISSN: 0006-3096

Biologia 

Biological Society of Pakistan
About: Biologia is an academic journal published by Biological Society of Pakistan. The journal publishes majorly in the area(s): Population & Species richness. It has an ISSN identifier of 0006-3096. Over the lifetime, 3354 publications have been published receiving 31262 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 2007-Biologia
TL;DR: The aim of this review is to briefly characterize endophytes and summarize the structuraly different bioactive secondary metabolites produced by endophytic microorganisms as well as microbial sources of these metabolites and their host plants.
Abstract: In the past few decades groups of scientists have focused their study on relatively new microorganisms called endophytes. By definition these microorganisms, mostly fungi and bacteria, colonise the intercellular spaces of the plant tissues. The mutual relationship between endophytic microorganisms and their host plants, taxanomy and ecology of endophytes are being studied. Some of these microorganisms produce bioactive secondary metabolites that may be involved in a host-endophyte relationship. Recently, many endophytic bioactive metabolites, known as well as new substances, possesing a wide variety of biological activities as antibiotic, antitumor, antiinflammatory, antioxidant, etc. have been identified. The microorganisms such as endophytes may be very interesting for biotechnological production of bioactive substances as medicinally important agents. Therefore the aim of this review is to briefly characterize endophytes and summarize the structuraly different bioactive secondary metabolites produced by endophytic microorganisms as well as microbial sources of these metabolites and their host plants.

263 citations

Journal ArticleDOI
Iti Sharma1
01 Jun 2012-Biologia
TL;DR: Arsenic is a highly toxic metalloid for all forms of life including plants as mentioned in this paper, and it can react with thiol (-SH) groups of enzymes and inhibits various metabolic processes.
Abstract: Arsenic is a highly toxic metalloid for all forms of life including plants. Arsenic enters in the plants through phosphate transporters as a phosphate analogue or through aquaglycoporins. Uptake of arsenic in plant tissues adversely affects the plant metabolism and leads to various physiological and structural disorders. Photosynthetic apparatus, cell division machinery, energy production, and redox status are the major section of plant system that are badly affected by As (V). Similarly As (III) can react with thiol (-SH) groups of enzymes and inhibits various metabolic processes. Arsenic is also known to induce oxidative stress directly by generating reactive oxygen species (ROS) during conversion of its valence forms or indirectly by inactivating antioxidant molecules through binding with their -SH groups. As-mediated oxidative stress causes cellular, molecular and physiological disturbances in various plant species. Activation of enzymatic antioxidants namely, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), Glutathione s-transferase, glutathione peroxidase (GPX) as well as non antioxidant compounds such as, ascorbate, glutathione, carotenoids are reported to neutralize arsenic mediated oxidative stress. Understanding of biochemistry of arsenic toxicity would be beneficial for the development of arsenic tolerant crops and other economically important plants.

185 citations

Journal ArticleDOI
01 Jun 2006-Biologia
TL;DR: Ethanolic extracts from spices of Melissa officinalis, Mentha piperita, Laurus nobilis, Rhus coriaria, Dianthus coryophyllum, Piper nigrum, Capsicum annum, Juniperus oxycedrus, Erica arborea, Colutea arborescens, and Cuminum cyminum collected from various regions of Turkey and local markets were assayed for the in vitro antibacterial activity.
Abstract: Eleven ethanolic extracts from spices of Melissa officinalis, Mentha piperita, Laurus nobilis, Rhus coriaria, Dianthus coryophyllum, Piper nigrum, Capsicum annum, Juniperus oxycedrus, Erica arborea, Colutea arborescens, and Cuminum cyminum collected from various regions of Turkey and local markets were assayed for the in vitro antibacterial activity against 3 Gram-positive (Bacillus subtilis, Staphylococcus aureus and S. epidermidis) and 2 Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), using agar dilution methods. In addition, their possible toxicity to Candida albicans and Aspergillus niger was determined, using both agar dilution and disc-diffusion methods. The minimum inhibition concentration (MIC) of the M. piperita, L. nobilis and J. oxycedrus ethanolic extracts was 5 mg/mL for all the microorganisms tested. P. aeruginosa was the most sensitive bacterial strain to P. nigrum and E. arborea extracts among both Gram-positive and Gram-negative bacteria tested with MIC of 5 mg/mL. The extracts of L. nobilis, D. coryophyllum, J. oxycedrus and C. arborescens showed higher inhibitory activity against the yeast C. albicans and the fungus A. niger than the standard antifungal nystatin.

169 citations

Journal ArticleDOI
18 Apr 2012-Biologia
TL;DR: In this paper, the authors evaluated the effects of low-temperature plasma (LTP) on the growth of maize seedlings and found that LTP treatment in duration of 60 seconds significantly increased the length, fresh and dry weight of the roots.
Abstract: The seeds of Zea mays L. cv. KWS were exposed to low-temperature plasma (LTP) by using Diffuse Coplanar Surface Barrier Discharge (DCSBD) for 60 and 120 seconds respectively. Growth parameters, anatomy of roots and activity of some enzymes (CAT, G-POX, SOD and DHO) isolated from roots grown from the seeds treated by LTP were evaluated. Our results indicate that LTP treatment of maize seeds affects post-germination growth of seedlings and this effect depends on the duration of LTP treatment. LTP treatment in duration of 60 seconds significantly increased the length, fresh and dry weight of the roots. However, the increase in time of LTP treatment to 120 seconds had inhibitive effect on the studied growth parameters. The activities of all studied antioxidant enzymes significantly increased with the age of maize seedlings in control conditions. On the other hand the application of LTP resulted in small, mostly non significant changes in the activity of antioxidant enzymes. Significant decrease in CAT activity was observed both in 3 and 6-day old maize roots and G-POX activity in 3-day old maize roots grown from seeds exposed to LTP for 60 seconds. A small, significant increase was detected only in SOD activity in 3-day old maize roots grown from seeds treated with LTP for 120 seconds and in 6-day old maize roots treated with LTP for 60 seconds. Significantly higher DHO activity was determined in embryos isolated from seeds treated with LTP for 60 seconds. On the contrary, in roots the DHO activity decreased with the time of LTP treatment. LTP treatment of seeds did not affect the anatomy of maize roots and caused only minor changes in the isoenzyme composition of G-POX and SOD.

147 citations

Journal ArticleDOI
01 Jun 2013-Biologia
TL;DR: Reactive oxygen species (ROS) are continuously produced by the metabolically active cells of seeds, and apparently play important roles in biological processes such as germination and dormancy.
Abstract: Reactive oxygen species (ROS) are continuously produced by the metabolically active cells of seeds, and apparently play important roles in biological processes such as germination and dormancy. Germination and ROS accumulation appear to be linked, and seed germination success may be closely associated with internal ROS contents and the activities of ROS-scavenging systems. Although ROS were long considered hazardous molecules, their functions as cell signaling compounds are now well established and widely studied in plants. In seeds, ROS have important roles in endosperm weakening, the mobilization of seed reserves, protection against pathogens, and programmed cell death. ROS may also function as messengers or transmitters of environmental cues during seed germination. Little is currently known, however, about ROS biochemistry or their functions or the signaling pathways during these processes, which are to be considered in the present review.

128 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202316
20224
2021367
2020248
2019163
2018135