scispace - formally typeset
Search or ask a question

Showing papers in "Chemistry-an Asian Journal in 2022"


Journal ArticleDOI
TL;DR: Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting.
Abstract: Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.

18 citations


Journal ArticleDOI
TL;DR: This review summarizes the major results of cAAC chemistry published until August 2021, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis.
Abstract: Abstract Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.

17 citations


Journal ArticleDOI
TL;DR: In this article , a facile and efficient green synthesis route for producing highly stable and electrochemically active three-dimensional interconnected graphene frameworks (3DIGF) from jute sticks was demonstrated.
Abstract: Over the past few years, the environmentally friendly synthesis of nanomaterials, including graphene using green chemistry, has attracted tremendous attention due to its easy handling, low cost, and biocompatibility. Here we demonstrate a facile and efficient green synthesis route for producing highly stable and electrochemically active three-dimensional interconnected graphene frameworks (3DIGF) from jute sticks. Initially, jute sticks derived three-dimensional amorphous activated carbon nanosheets (3DAACNs) were prepared at low temperatures (i.e., 850 °C) in an inert environment. The resultant 3DAACNs were then heat treated at a high temperature (i.e., 2700 °C) under an inert environment, resulting in 3DIGF. The prepared carbonaceous materials were fully characterized, and various experimental techniques confirmed the preparation of 3DIGF. The prepared 3DIGF shows a highly stable nature in thermal and chemical environments and demonstrates a highly dynamic nature for the electrooxidation of sulfide. This study could be considered a vital contribution towards the economic and simple approach for preparing 3DIGF from biomass.

13 citations


Journal ArticleDOI
TL;DR: This article will provide an overview of the current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Abstract: Abstract Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection‐related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra‐small nanoscale size and shape through different convenient bottom‐up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano‐formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.

12 citations


Journal ArticleDOI
TL;DR: The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc.
Abstract: The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.

12 citations


Journal ArticleDOI
TL;DR: This review article addresses the role of biomaterials based on PVA mixed with other ingredients for wound dressing and focuses on its recent use in wound dressings as carriers of active substances.
Abstract: The development of ideal wound dressing with excellent properties, such as exudate absorption capacity, drug release control ability, and increased wound healing, is currently a major requirement for wound healing. Polyvinyl alcohol (PVA) is a biodegradable semi-crystalline synthetic polymer that has been used in the field of biotechnology such as tissue regeneration, wound dressing, and drug delivery systems. In recent years, PVA-based wound dressing materials have received considerable attention due to their excellent properties such as biodegradability, biocompatibility, non-toxicity and low cost. PVA can be used as a wound dressing material to create the necessary moist wound environment, improve the physical properties of the dressing, and increase the wound healing rates. In addition, PVA can also be mixed with other organic and inorganic materials and can be used for drug delivery and wound healing. This review article addresses the role of biomaterials based on PVA mixed with other ingredients for wound dressing. It also focuses on its recent use in wound dressings as carriers of active substances.

11 citations


Journal ArticleDOI
TL;DR: This review described the application of cyanine fluorophores in NIR-II sensing and imaging and hoped it can help researchers grab the latest information in the fast-growing field.
Abstract: The cyanine fluorophores, a kind of classic organic fluorophores, are famous for their high extinction coefficient, simple synthetic route, and relatively long absorption and emission wavelengths. Moreover, the excellent biocompatibility and low toxicity in biological samples make cyanine fluorophores show excellent application value in the biomedical field, especially in Near-Infrared II (NIR-II) sensing and imaging. In this review, we briefly outline the history, characteristics, and current state of development of cyanine fluorophores. In particular, we described the application of cyanine fluorophores in NIR-II sensing and imaging. We hope this review can help researchers grab the latest information in the fast-growing field of cyanine fluorophores for NIR-II sensing and imaging.

11 citations


Journal ArticleDOI
TL;DR: In this article , a review of the progress in the past two decades of the 1,4-Pd migration reaction is presented, summarizing the tandem process and classifying it based on insertion, elimination, transmetalation, and bond activation.
Abstract: Transition-metal-catalyzed tandem reactions have become a mainstay in organic chemistry owing to their high atom- and step-economies. Metal-migration-based tandem reactions allow the engagement of simple starting materials for incorporating functional groups into certain positions and constructing complex scaffolds, which provide novel means that are complementary to traditional cross-coupling or C-H activation processes. In light of the broad utility of the 1,4-Pd migration reaction, this paper reviews its progress in the past two decades, summarizing the tandem process and classifying it based on insertion, elimination, transmetalation, and C-H bond activation. Special emphasis is placed on the driving force of Pd migration and different migration mechanisms. Moreover, this review also attempts to summarize common strategies for improving the regio- and site-selectivities of the migration process.

11 citations


Journal ArticleDOI
TL;DR: In this paper , a comprehensive review of the recent progress in the synthetic strategies and catalysis applications of encapsulated metal clusters is provided, and the authors seek to uncover promising ideas that can stimulate future developments at both the fundamental and applied levels.
Abstract: Metal clusters (MCs) with dimensions between a single metal atom and nanoparticles of >2 nm usually possess distinct geometric and electronic structures, and their outstanding performance in catalysis applications have underpinned a broad research interest. However, smaller-sized MCs are easily deactivated by migration coalescence during the catalysis process because of their high surface energy. Therefore, the search of an appropriate stabilizer for MCs is urgently demanded. In recent years, porous organic polymers (POPs) and organic molecular cages (OMCs), as emerging functional materials, have attracted significant attention. Benefiting from the spatial confinement, encapsulating MCs into these porous organic materials is a promising approach to guarantee the uniform size distribution and stability. In this review, we aim to provide a comprehensive summary of the recent progress in the synthetic strategies and catalysis applications of the encapsulated MCs, and seek to uncover promising ideas that can stimulate future developments at both the fundamental and applied levels.

10 citations


Journal ArticleDOI
TL;DR: The authors in this article reviewed the activity improvement scheme and catalytic mechanism of single-atom nano-zymes and highlighted the latest research progress of SAzymes in the fields of biomedical sensing and therapy.
Abstract: Nanozymes have received extensive attention in the fields of sensing and detection, medical therapy, industry, and agriculture thanks to the combination of the catalytic properties of natural enzymes and the physicochemical properties of nanomaterials, coupled with superior stability and ease of preparation. Despite the promise of nanozymes, conventional nanozymes are constrained by their oversized size and low catalytic capacity in sophisticated practical application environments. single-atom nanozymes (SAzymes) were characterized as nanozymes with high catalytic efficiency by uniformly distributed single atoms as catalysis sites, thus effectively addressing the defects of conventional nanozymes. This paper reviews the activity improvement scheme and catalytic mechanism of SAzymes and highlights the latest research progress of SAzymes in the fields of biomedical sensing and therapy. Eventually, the challenges and future directions of SAzymes are discussed in this paper.

10 citations


Journal ArticleDOI
TL;DR: In this paper , a series of Cu electrodes with different ECSA was synthesized through a simple oxidation-reduction approach, and the improved selectivity of C 2 H 4 is proportional to the ECSA of Cu in the low ECSA range, and further increase in ECSA has a negligible effect on its selectivity.
Abstract: Electrochemical reduction of CO 2 to produce valuable multi-carbon products is a promising avenue for promoting CO 2 conversion and achieving renewable energy storage, and it has also attracted considerable attention recently. However, the synthesis of Cu electrode with a controllable electrochemical active surface area (ECSA) to understand its role in CO 2 reduction to C 2 H 4 remains challenging. Herein, a series of Cu electrodes with different ECSA is synthesized through a simple oxidation-reduction approach. We reveal that the improved selectivity of C 2 H 4 is proportional to the ECSA of Cu in the low ECSA range, and a further increase in ECSA has a negligible effect on its selectivity. The enlarged surface area could strengthen the local pH effect near the surface of Cu electrode and suppress the generation of C 1 products as well as H 2 . The study provides a feasible strategy to rationally design electrocatalysts with high electrochemical CO 2 reduction performances.

Journal ArticleDOI
TL;DR: In this paper , a two-dimensional MoN/MoO 2 heterostructure nanosheets using nickel foam as a substrate for water splitting was introduced, and the promising bifunctional catalytic performance of their catalyst opens up a new way for efficient electrochemical water splitting.
Abstract: It is still a challenge to realize the dream of hydrogen-based economy using a robust catalyst for overall water splitting. For the first time, we introduce two-dimensional MoN/MoO 2 heterostructure nanosheets using nickel foam as a substrate for water splitting. The heterojunction formation was achieved through the partial nitriding of Mo-based precursor to MoN in the annealing process under NH 3 environment. The heterogeneous interface between MoN and MoO 2 as active sites is supposed to improve the surface reaction kinetics and electronic conductivity. Therefore, excellent performance is achieved when MoN/MoO 2 is employed as both cathode and anode electrocatalysts, the corresponding cell voltages are 1.57 and 1.84 V at 10 and 100 mA cm -2 in 1 M KOH, respectively. The promising bifunctional catalytic performance of our catalyst opens up a new way for efficient electrochemical water splitting.

Journal ArticleDOI
TL;DR: In this article , a review of recent development in TiO 2 -based photoanodes as well as some key fundamentals are highlighted, and the corresponding mechanisms and key factors for high solar-to-hydrogen (STH) conversion efficiency are highlighted.
Abstract: Photoelectrochemical (PEC) water splitting has attracted a great attention in the past several decades which holds great promise to address global energy and environmental issues by converting solar energy into hydrogen. However, its low solar-to-hydrogen (STH) conversion efficiency remains a bottleneck for practical application. Developing efficient photoelectrocatalysts with high stability and high STH conversion efficiency is one of the key challenges. As a typical n-type semiconductor, titanium dioxide (TiO 2 ) exhibits high PEC water splitting performance, especially high chemical and photo stability. But, TiO 2 has also disadvantages such as wide band gap and fast electron-hole recombination rate, which seriously hinder its PEC performance. This review focuses on recent development in TiO 2 -based photoanodes as well as some key fundamentals. The corresponding mechanisms and key factors for high STH, and controllable synthesis and modification strategies are highlighted in this review. We conclude finally with an outlook providing a critical perspective on future trends on TiO 2 -based photoanodes for PEC water splitting.

Journal ArticleDOI
TL;DR: In this paper , a robust method for the formation of tripalladium(II) cages from the 2:3:3 combination of a tritopic ligand, Pd II , and a selection of ditope ligands of the correct size and geometry is presented.
Abstract: There is a concerted attempt to develop self-assembled metallo-cages of greater structural complexity, and heteroleptic Pd II cages are emerging as prime candidates in these efforts. Most of these are dinuclear: few examples of higher nuclearity have been reported. We demonstrate here a robust method for the formation of tripalladium(II) cages from the 2:3:3 combination of a tritopic ligand, Pd II , and a selection of ditopic ligands of the correct size and geometry.

Journal ArticleDOI
TL;DR: In this paper , a review highlights recent advances towards the synthesis of well defined polythioesters by ring-opening polymerization (ROP) of cyclic thioesters, namely thiolactones, as well as of S-carboxyanhydrides and thionolactones.
Abstract: Abstract Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters with a wide range of applications; in particular, they currently stand as promising alternatives to conventional polyolefin‐based “plastics”. The introduction of sulfur atoms within the PHAs backbone can endow the resulting polythioesters (PTEs) with differentiated, sometimes enhanced thermal, optical and mechanical properties, thereby widening their versatility and use. Hence, PTEs have been gaining increasing attention over the past half‐decade. This review highlights recent advances towards the synthesis of well‐defined PTEs by ring‐opening polymerization (ROP) of cyclic thioesters – namely thiolactones – as well as of S‐carboxyanhydrides and thionolactones; it also covers the ring‐opening copolymerization (ROCOP) of cyclic thioanhydrides or thiolactones with epoxides or episulfides. Most of the ROP reactions described are of anionic type, mediated by inorganic, organic or organometallic initiators/catalysts, along with a few enzymatic reactions as well. Emphasis is placed on the reactivity of the thio monomers, in relation to their ring‐size ranging from 4‐ to 5‐, 6‐ and 7‐membered cycles, the nature of the catalyst/initiating systems implemented and their efficiency in terms of activity and control over the PTE molar mass, dispersity, topology, and microstructure.

Journal ArticleDOI
TL;DR: In this paper , the authors reviewed several impressive methods to design and fabricate ECDs with high performance and versatility based on recent frontier research, focusing on the desirability and strengthening mechanism of nanostructured inorganic EC materials.
Abstract: For the assembly of electrochromic devices (ECDs) generally with multilayer structures, supportive components usually are needed to be incorporated with EC materials. The reasonable project and development of ECDs will achieve broad expected applications. In this study, we reviewed several impressive methods to design and fabricate ECDs with high-performance and versatility based on recent frontier research. The first part of the review is centered on the desirability and strengthening mechanism of nanostructured inorganic EC materials. The second part illustrates the recent advances in transparent conductors. We then summarize the demands and means to modify the formation of electrolytes for practicable ECDs. Moreover, efforts to increase the compatibility with the EC layer and ion capacity are delineated. In the end, the application prospects of inorganic ECDs are further explored, which offers a guideline for the industrialization process of ECDs.

Journal ArticleDOI
TL;DR: Amin et al. as discussed by the authors discussed the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging.
Abstract: Surface-enhanced Raman scattering (SERS) has received considerable attention from researchers due to its high molecular specificity, high sensitivity, non-invasive and multiplexing. Recently, various metal substrates have been exploited for SERS analysis and imaging. Among them, gold nanomaterials are important SERS substrates with outstanding surface plasmon resonance effects, structural adjustability and good biocompatibility, making them widely used in biomedical diagnosis and clinical fields. In this minireview, we discuss the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging. This review mainly includes the basic shapes and morphologies of gold based SERS probes, such as gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanostars (AuNSs), as well as other gold nanostructures. Finally, a brief outlook for the future development of SERS technique in the context of efficient diagnostics and therapy guidance is provided. We hope that this minireview will facilitate the design and future development of Surface-enhanced Raman probes based on gold nanomaterials.

Journal ArticleDOI
TL;DR: In this article , a review highlights the development of various inorganic matrices to comprehend the advantages of laser desorption/ionization mass spectrometry (LDI MS)-based metabolic analysis and the recent diagnostic applications based on target metabolite detection and untargeted metabolic fingerprints in biological fluids.
Abstract: Metabolic analysis in biofluids interprets the end products in the bioprocess, emerging as an irreplaceable disease diagnosis and monitoring platform. Laser desorption/ionization mass spectrometry (LDI MS)-based metabolic analysis holds great potential for clinical applications in terms of high throughput, rapid signal readout, and minimal sample preparation. There are two essential elements to construct the LDI MS-based metabolic analysis: 1) well-designed nanomaterials as matrices; 2) machine learning algorithms for data analysis. This review highlights the development of various inorganic matrices to comprehend the advantages of LDI MS in metabolite detection and the recent diagnostic applications based on target metabolite detection and untargeted metabolic fingerprints in biological fluids.

Journal ArticleDOI
TL;DR: In this paper , the causes of side reactions and dendrite formation of mild aqueous ZIBs are summarized and a logical system of methodologies for improving the electrochemical performance is established.
Abstract: Aqueous zinc-ion batteries (ZIBs) are promising candidates for the next-generation high-energy storage devices, owing to their resource availability, low cost, eco-friendliness, and high safety. The zinc (Zn) metal anode in a suitable battery system, including an electrolyte and a high-performance cathode electrode, can deliver an excellent electrochemical performance. However, several obstacles must be overcome to utilize aqueous ZIBs. Among these, Zn dendrite growth, corrosion, and side reactions severely impair the performance of rechargeable ZIBs. To deal with these issues, a profound understanding of the mechanism of the matter occurring in electrochemical cycles is essential to thoroughly solve the challenges. Instead of focusing solely on techniques for improving the performance of Zn metal anodes, this review delves into and summarizes the causes of side reactions and dendrite formation, thereby establishing a logical system of methodologies for improving the electrochemical performance of mild aqueous ZIBs. The correlation between the Zn metal anode, aqueous electrolyte, separators and the performance of ZIBs is also discussed in detail. There is also a brief perspective on the future development of Zn metal anodes in aqueous solutions. This study sheds a light on the challenges associated with the construction of high-performance ZIBs, which will significantly aid in their practical implementation.

Journal ArticleDOI
TL;DR: It is suggested that the GelMA/HAMA hydrogels can be promising candidates as bioinks for the 3D printing of skin equivalents with epidermal-papillary-dermal multi-layers and hair follicle structures, and they might serve as a useful model in skin tissue engineering and regeneration.
Abstract: Recent advances in three-dimensional (3D) bioprinting technologies enabled the fabrication of sophisticated live 3D tissue analogs. Although various hydrogel-based bioink has been reported, the development of advanced bioink materials that can reproduce the composition of native extracellular matrix (ECM) accurately and mimic the intrinsic property of laden cells is still challenging. In this work, 3D printed skin equivalents incorporating hair follicle structures and epidermal-papillary-dermal layers are fabricated with gelatin methacryloyl (GelMA)/hyaluronic acid (HA) MA (HAMA) hydrogel (GelMA/HAMA) bioink. The composition of collagen and glycosaminoglycan (GAG) of native skin was recapitulated by adjusting the combination of GelMA and HAMA. The GelMA/HAMA bioink was proven to have excellent viscoelastic and physicochemical properties, 3D printability, cytocompatibility, and functionality to maintain the hair inductive potency and facilitated spontaneous hair pore development. Overall, we suggest that the GelMA/HAMA hydrogels can be promising candidates as bioinks for the 3D printing of skin equivalents with epidermal-papillary-dermal multi-layers and hair follicle structures, and they might serve as a useful model in skin tissue engineering and regeneration.

Journal ArticleDOI
TL;DR: This review discusses the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo and concludes two general strategies to expand the library of DNAzymes are concluded.
Abstract: DNAzymes are functional nucleic acid with catalytic activity. Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzymes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo . Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.

Journal ArticleDOI
TL;DR: In this article , the basic concepts and strategies of cancer immunotherapy and summarizes the recent discoveries on the immune effects of traditional platinum-based anticancer compounds, focusing on platinum, ruthenium, iridium and copper complexes.
Abstract: Metal complexes have shown great potential in cancer immunotherapy. This review briefly introduces the basic concepts and strategies of cancer immunotherapy and summarizes the recent discoveries on the immune effects of traditional platinum-based anticancer compounds. In addition, we also outline the latest research progresses on metal complexes for cancer immunotherapy focusing on platinum, ruthenium, iridium, rhenium and copper complexes. Finally, the research perspectives and unsolved problems on the applications of metallo-anticancer agents in cancer immunotherapy are purposed.

Journal ArticleDOI
TL;DR: In this article , the authors summarized recent achievements of ML studies on two different problems; predicting reaction properties and synthetic routes, and the predictions of reactivity, self-optimization of reaction, and designing retrosynthetic reaction paths are also tackled by ML approaches.
Abstract: Abstract Machine learning (ML) approaches have enabled rapid and efficient molecular property predictions as well as the design of new novel materials. In addition to great success for molecular problems, ML techniques are applied to various chemical reaction problems that require huge costs to solve with the existing experimental and simulation methods. In this review, starting with basic representations of chemical reactions, we summarized recent achievements of ML studies on two different problems; predicting reaction properties and synthetic routes. The various ML models are used to predict physical properties related to chemical reaction properties (e. g. thermodynamic changes, activation barriers, and reaction rates). Furthermore, the predictions of reactivity, self‐optimization of reaction, and designing retrosynthetic reaction paths are also tackled by ML approaches. Herein we illustrate various ML strategies utilized in the various context of chemical reaction studies.

Journal ArticleDOI
TL;DR: In this article , the basic concept and latest applications of the STM technique for in situ studies of electrocatalytic processes, particularly its capability in analyzing species adsorption/desorption, surface reconstruction, active site identification, and electrocatalyst dissolution, as well as its advantages and limitations.
Abstract: Electrocatalysis is the foundation of many techniques that are currently used to address both environmental and energy problems. Therefore, understanding electrocatalytic processes is essential to guide the rational design of electrocatalysts. Scanning tunneling microscopy (STM), which was developed in the 1980s, remains one of the few techniques that allow surface imaging at the atomic level, making it incredibly useful in electrocatalytic research. In this review, we introduced the basic concept and latest applications of the STM technique for in situ studies of electrocatalytic processes, particularly its capability in analyzing species adsorption/desorption, surface reconstruction, active site identification, and electrocatalyst dissolution, as well as its advantages and limitations.

Journal ArticleDOI
TL;DR: In this paper , applications and mechanisms of lignocellulose biodegradation enzymes are discussed, and the nanomaterials and methods used to immobilize enzymes are also discussed.
Abstract: Lignocellulose biomass (LCB) has extensive applications in many fields such as bioenergy, food, medicines, and raw materials for producing value-added products. One of the keys to efficient utilization of LCB is to obtain directly available oligo- and monomers (e.g., glucose). With the characteristics of easy recovery and separation, high efficiency, economy, and environmental protection, immobilized enzymes have been developed as heterogeneous catalysts to degrade LCB effectively. In this review, applications and mechanisms of LCB-degrading enzymes are discussed, and the nanomaterials and methods used to immobilize enzymes are also discussed. Finally, the research progress of lignocellulose biodegradation catalyzed by nano-enzymes was discussed.

Journal ArticleDOI
TL;DR: This review presents recent progress in 1,2-amino(hetero)arylation of alkenes organized in three different modes: intramolecular transformations employing C, N tetheredAlkene difunctionalization, two-component reactions with different combination of precursors, and three component reactions covered.
Abstract: Alkene amino(hetero)arylation presents a highly efficient and straightforward strategy for direct installation of amino groups and heteroaryl rings across a double bond simultaneously. An extensive array of practical transformations has been developed via alkene difunctionalization approach to access a broad range of medicinally valuable (hetero)arylethylamine motifs. This review presents recent progress in 1,2-amino(hetero)arylation of alkenes organized in three different modes. First, intramolecular transformations employing C, N tethered alkenes will be introduced. Next, two-component reactions will be discussed with different combination of precursors, N -tethered alkenes and external aryl precursor, C -tethered alkenes and external amine precursor, or C, N -tethered reagents, and alkenes. Last, threecomponent intermolecular amino(hetero)arylation reactions will be covered.

Journal ArticleDOI
TL;DR: The existing non-invasive optical imaging probes for the detection of biomarkers in NAFLD, including microenvironment (viscosity, polarity), ROS, RSS, ions, proteins, and nucleic acids are summarized.
Abstract: Nonalcoholic fatty liver disease (NAFLD), emerging as one of the most common chronic liver diseases including simple steatosis and non-alcoholic steatohepatitis (NASH), is likely to progress to liver fibrosis and hepatic carcinoma if not treated in time. Therefore, early diagnosis and treatment of NAFLD are necessary. Currently, liver biopsy, as the gold standard for clinical diagnosis of NAFLD, is not widely accepted by patients due to its invasiveness. However, other non-invasive methods that had been reported for NAFLD (such as magnetic resonance imaging, positron emission tomography, and ultrasound) still suffer from low resolution and sensitivity, which are available as a guide for liver biopsy sometimes. As a non-invasive modality with high spatiotemporal resolution and superior sensitivity, optical imaging methods have been widely favored in recent years, mainly including fluorescence imaging, photoacoustic imaging, and bioluminescence imaging. With these optical imaging approaches, a series of optical probes based on optical and molecular-specific design have been developed for the biomarker diagnosis and research of diseases. In this review, we summarize the existing non-invasive optical imaging probes for the detection of biomarkers in NAFLD, including microenvironment (viscosity, polarity), ROS, RSS, ions, proteins, and nucleic acids. Design strategies for optical imaging probes and their applications in NAFLD bioimaging are discussed and focused on. We also highlight the potential challenges and prospects of designing new generations of optical imaging probes in NAFLD studies, which will further enhance the diversity, practicality, and clinical feasibility of NAFLD research.

Journal ArticleDOI
TL;DR: In this article , the authors reviewed the recent advancement in using MOF-based adsorbents and catalysts for the removal of pharmaceuticals, especially antibiotics, from polluted water.
Abstract: There is an increasing level of various pollutants and their persistence in aquatic environments. The improper use of antibiotics and their inefficient metabolism in organisms result in their release into aquatic environments. Antibiotic abuse has led to hazardous effects on human health. Thereby, efficient removal of pharmaceuticals, particularly antibiotics, from wastewater and contaminated water bodies is greatly interested in international research communities. Metal-organic framework (MOF) materials, as a hybrid group of material containing metallic center and organic linkers, offer a porous structure that is highly efficient for removing different pollutants from contaminated water and wastewater streams. This article aims to review the recent advancement in using MOF-based adsorbents and catalysts for the removal of pharmaceuticals, especially antibiotics, from polluted water. Applying MOFs-based structures for removing antibiotics using photocatalytic removal and adsorptive removal techniques will be discussed and evaluated in this review paper. Various MOF-based materials such as functionalized MOFs, MOF-based composites, magnetic MOF-based composites, MOFs templated-metal oxide catalysts for removing pharmaceuticals, personal care products, and antibiotics from contaminated aqueous media are discussed. Furthermore, effective operational parameters on the adsorption, adsorption mechanisms, adsorption isotherms, and thermodynamic parameters are explained and discussed. Finally, in the concluding remarks, the challenges and future outlooks of using MOFs-based adsorbents and catalysts for removing antibiotics are summarized.

Journal ArticleDOI
TL;DR: This one-pot strategy offers access to a divergent library of cyano analogues of prevalent 3-di/trifluoromethyl pyrazole pharmacophores, among which several compounds have shown potent inhibitory activity towards cyclooxygenase 2 (COX-2) compared with marketed drug Celecoxib.
Abstract: Here we present a quadruple functionalization approach for the modular construction of fully substituted N 1 -aryl 3-di/trifluoro-methyl-4/5-cyanopyrazole pharmacophores from readily available hydrazonyl chlorides and dicyanoalkenes. The realization of this [3 + 2] cycloaddition reaction hinges upon the employment of N -aryl di/trifluoromethyl nitrile imines as the 1,3-dipoles to bypass external synthetic steps and dicyanoalkenes as the dipolarophiles to tune the regioselectivity. This one-pot strategy offers access to a divergent library of cyano analogues of prevalent 3-di/trifluoromethyl pyrazole pharmacophores, among which several compounds have shown potent inhibitory activity towards cyclooxygenase 2 (COX-2) compared with marketed drug Celecoxib.

Journal ArticleDOI
TL;DR: In this paper , a cyclic organic amine 3-hydroxypyridine was used to assemble a 1D organic-inorganic hybrid dielectric material C5 H6 NOPbBr3 (1), which exhibits semiconducting properties with an indirect bandgap of 2.78 eV.
Abstract: Cyclic organic amines are emerging as excellent building blocks to assemble organic-inorganic hybrid phase transition materials due to their flexible cyclic structure. Here, we have assembled a 1D organic-inorganic hybrid dielectric material C5 H6 NOPbBr3 (1) by alloying the cyclic organic amine 3-hydroxypyridine. 1 displays a remarkable switchable dielectric response induced by an order-disorder transformation of the organic moiety, this transformation behaviour is confirmed by DSC and Hirshfeld surface measurements. More interestingly, 1 has a narrowband emission (FWHM=4.64 nm) at 590 nm; FWHM is a major quality figure for narrowband photodetectors. In addition, 1 exhibits semiconducting properties with an indirect bandgap of 2.78 eV by the analysis of the UV-Vis absorption results.