scispace - formally typeset
Search or ask a question
JournalISSN: 1557-1858

Food Biophysics 

Springer Science+Business Media
About: Food Biophysics is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Chemistry & Emulsion. It has an ISSN identifier of 1557-1858. Over the lifetime, 784 publications have been published receiving 19451 citations. The journal is also known as: Food biophys. & Food Biophys.


Papers
More filters
Journal ArticleDOI
TL;DR: Solid lipid nanoparticles (SLN) as discussed by the authors are a type of nano-emulsions with the dispersed phase being composed of a solid carrier lipid and bioactive ingredient mixture.
Abstract: The inclusion of bioactive compounds, such as carotenoids, omega-3 fatty acids, or phytosterols, is an essential requisite for the production of functional foods designed to improve the long-term health and well-being of consumers worldwide. To incorporate these functional components successfully in a food system, structurally sophisticated encapsulation matrices have to be engineered, which provide maximal physical stability, protect ingredients against chemical degradation, and allow for precise control over the release of encapsulated components during mastication and digestion to maximize adsorption. A novel encapsulation system initially developed in the pharmaceutical industries to deliver lipophilic bioactive compounds is solid lipid nanoparticles (SLN). SLN consist of crystallized nanoemulsions with the dispersed phase being composed of a solid carrier lipid–bioactive ingredient mixture. Contrary to larger colloidal solid lipid particles, specific crystal structures can be “dialed-in” in SLN by using specific surfactant mixtures and ensuring that mean particle sizes are below 100–200 nm. Moreover, in SLN, microphase separations of the bioactive compound from the solidifying lipid matrix can be prevented resulting in an even dispersion of the encapsulated compound in the solid matrix thereby improving chemical and physical stability of the bioactive. In this review article, we will briefly introduce the structure, properties, stability, and manufacturing of solid lipid particles and discuss their emerging use in food science.

409 citations

Journal ArticleDOI
TL;DR: Overall application of cold plasma for microbial destruction on different food substrates like fruits, meat products, cheese etc. was discussed.
Abstract: In the past cold plasma is used for sterilization of sensitive materials and now it is extended to food industries as a novel technology. For years cold plasma processing has been viewed as useful for microbial inactivation while maintaining quality of fresh produce. However, this process is not effective for in vitro model food systems for inactivation of microbes or enzymes which are present in intact tissues, as it is a surface phenomenon. Cold plasma technology is also used to inactivate endogenous enzymes which are responsible for browning reactions particularly polyphenoloxidase and peroxidases. Several research investigations showed a reduced growth of microorganism via different mode of actions by etching phenomenon, cell disruption by electrophoration etc. Plasma technology is considered as modern non conventional technique which is used for the preparation of modified starches, altering its physical and chemical properties. Overall application of cold plasma for microbial destruction on different food substrates like fruits, meat products, cheese etc. was discussed. Besides this, it is also used to alter the germination rate of seeds. It is an eco-friendly process which is used in the preservation of food and other potential applications as an alternative to common techniques.

372 citations

Journal ArticleDOI
TL;DR: In this article, protein-polysaccharide conjugates and complexes are used for stabilizing the outer droplets of W/O/W emulsions, improving the stability and yield of model systems.
Abstract: Double emulsions of the water-in-oil-in-water (W/O/W) type have application in the formulation of reduced-fat food products and as vehicles for encapsulation and delivery of nutrients during food digestion. Progress in the development of stable double emulsions for food use is dependent on replacing small-molecule emulsifiers and synthetic polymeric stabilizing agents by food-grade ingredients. Of particular value for conferring the required functionality are food proteins and polysaccharides. This review describes how these biopolymers have been successfully incorporated into the internal and external aqueous phases of W/O/W emulsions to improve the stability and yield of model systems. Recent advances in the use of protein–polysaccharide conjugates and complexes for the stabilization of the outer droplets of W/O/W emulsions are highlighted.

362 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the fundamentals of freezing, methods of observation and measurement of ice morphology, and the role of ice morphological properties in technological applications, including the use of ice nucleation agents, antifreeze proteins, ultrasound and high pressure.
Abstract: Freezing is the process of ice crystallization from supercooled water. Ice crystal morphology plays an important role in the textural and physical properties of frozen and frozen-thawed foods and in processes such as freeze drying, freeze concentration, and freeze texturization. Size and location of ice crystals are key in the quality of thawed tissue products. In ice cream, smaller ice crystals are preferred because large crystals results in an icy texture. In freeze drying, ice morphology influences the rate of sublimation and several morphological characteristics of the freeze-dried matrix as well as the biological activity of components (e.g., in pharmaceuticals). In freeze concentration, ice morphology influences the efficiency of separation of ice crystals from the concentrated solution. The cooling rate has been the most common variable controlling ice morphology in frozen and partly frozen systems. However, several new approaches show promise in controlling nucleation (consequently, ice morphology), among them are the use of ice nucleation agents, antifreeze proteins, ultrasound, and high pressure. This paper summarizes the fundamentals of freezing, methods of observation and measurement of ice morphology, and the role of ice morphology in technological applications.

304 citations

Journal ArticleDOI
TL;DR: Infrared spectroscopy combined with Fourier transform (FT-IR) was used to evaluate differences among cell wall residues and among species after each step of sequential extraction of pectins and hemicelluloses.
Abstract: This study focuses on the analysis of polysaccharide residues from the cell walls of fruits and vegetables: tomato, potato, pumpkin, carrot and celery root. An alcohol-insoluble residue was prepared from plant material by extraction using the hot ethyl alcohol method and then cell wall fractions soluble in trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetate, sodium carbonate and alkaline solution were sequentially extracted. Infrared spectroscopy combined with Fourier transform (FT-IR) was used to evaluate differences among cell wall residues and among species after each step of sequential extraction of pectins and hemicelluloses. Additionally, pectic substances were identified using an Automated Wet Chemistry Analyser. Principal component analysis (PCA) was applied to FT-IR spectra in two regions: 1,800–1,200 cm−1 and 1,200–800 cm−1 in order to distinguish different components of cell wall polysaccharides. This method also allowed us the possibility of highlighting the most important wavenumbers for each type of polysaccharide: 1,740, 1,610 and 1,240 cm−1 denoting pectins or 1,370 and 1,317 cm−1 denoting hemicelluloses and cellulose, respectively.

285 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202328
202267
202160
202046
201944
201845