scispace - formally typeset
Search or ask a question
JournalISSN: 1662-5218

Frontiers in Neurorobotics 

Frontiers Media
About: Frontiers in Neurorobotics is an academic journal published by Frontiers Media. The journal publishes majorly in the area(s): Computer science & Medicine. It has an ISSN identifier of 1662-5218. It is also open access. Over the lifetime, 1081 publications have been published receiving 16868 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling.
Abstract: Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.

1,463 citations

Journal ArticleDOI
TL;DR: This paper sets the ground for a systematic operational study of intrinsic motivation by presenting a formal typology of possible computational approaches, partly based on existing computational models, but also presents new ways of conceptualizing intrinsic motivation.
Abstract: Intrinsic motivation, the causal mechanism for spontaneous exploration and curiosity, is a central concept in developmental psychology. It has been argued to be a crucial mechanism for open-ended cognitive development in humans, and as such has gathered a growing interest from developmental roboticists in the recent years. The goal of this paper is threefold. First, it provides a synthesis of the different approaches of intrinsic motivation in psychology. Second, by interpreting these approaches in a computational reinforcement learning framework, we argue that they are not operational and even sometimes inconsistent. Third, we set the ground for a systematic operational study of intrinsic motivation by presenting a formal typology of possible computational approaches. This typology is partly based on existing computational models, but also presents new ways of conceptualizing intrinsic motivation. We argue that this kind of computational typology might be useful for opening new avenues for research both in psychology and developmental robotics.

659 citations

Journal ArticleDOI
TL;DR: The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods, and show that several factors can be fundamental for the analysis of sEMG data.
Abstract: Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

483 citations

Journal ArticleDOI
TL;DR: Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities, and the method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems.
Abstract: In order to endow robots with humanlike abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac®) we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of “prior experience” to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median=5) and yielded a 95.4% success rate. The method of “Bayesian exploration” developed and tested in this paper may generalize well to other cognitive problems.

335 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive review of the state-of-the-art of a complete BCI system and a considerable number of popular BCI applications are reviewed in terms of electrophysiological control signals, feature extraction, classification algorithms, and performance evaluation metrics.
Abstract: Brain-Computer Interface (BCI), in essence, aims at controlling different assistive devices through the utilization of brain waves. It is worth noting that the application of BCI is not limited to medical applications, and hence, the research in this field has gained due attention. Moreover, the significant number of related publications over the past two decades further indicates the consistent improvements and breakthroughs that have been made in this particular field. Nonetheless, it is also worth mentioning that with these improvements, new challenges are constantly discovered. This article provides a comprehensive review of the state-of-the-art of a complete BCI system. First, a brief overview of electroencephalogram (EEG)-based BCI systems is given. Secondly, a considerable number of popular BCI applications are reviewed in terms of electrophysiological control signals, feature extraction, classification algorithms, and performance evaluation metrics. Finally, the challenges to the recent BCI systems are discussed, and possible solutions to mitigate the issues are recommended.

207 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023137
2022307
2021162
2020116
2019107
201884